Facile Fabrication of Densely Packed Ti3C2 MXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance
The development of modern electronics has raised great demand for multifunctional materials to protect electronic instruments against electromagnetic interference (EMI) radiation and ice accretion in cold weather. However, it is still a great challenge to prepare high-performance multifunctional fil...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-07, Vol.15 (7), p.12405-12417 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of modern electronics has raised great demand for multifunctional materials to protect electronic instruments against electromagnetic interference (EMI) radiation and ice accretion in cold weather. However, it is still a great challenge to prepare high-performance multifunctional films with excellent flexibilty, mechanical strength, and durability. Here, we propose a layer-by-layer assembly of cellulose nanofiber (CNF)/Ti3C2T x nanocomposites (TM) on a bacterial cellulose (BC) substrate via repeated spray coating. CNFs are hybridized with Ti3C2T x nanoflakes to improve the mechanical properties of the functional coating layer and its adhesion with the BC substrate. The densely packed hierarchical structure and strong interfacial interactions endows the TM/BC films with good flexibility, ultrahigh mechanical strength (>250 MPa), and desirable toughness (>20 MJ cm–3). Furthermore, benefiting from the densely packed hierarchical structure, the resultant TM/BC films present outstanding EMI shielding effictiveness of 60 dB and efficient electro-/photothermal heating performance. Silicone encapsulation further imparts high hydrophobicity and exceptional durability against solutions and deformations to the multifunctional films. Impressively, the silicone-coated TM/BC film (Si-TM/BC) exhibits desirable low voltage-driven Joule heating and excellent photoresponsive heating performance, which demonstrates great feasibility for efficient thermal deicing under actual conditions. Therefore, we believe that the Si-TM/BC film with excellent mechanical properties and durability holds great promise for the practical applications of EMI shielding and ice accretion elimination. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c04526 |