An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data
The classical guitar is a popular string instrument in which the sound results from a coupled mechanical process. The oscillation of the plucked strings is transferred through the bridge to the body, which acts as an amplifier to radiate the sound. In this contribution, a procedure to create a numer...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2021-06, Vol.149 (6), p.4450-4462 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classical guitar is a popular string instrument in which the sound results from a coupled mechanical process. The oscillation of the plucked strings is transferred through the bridge to the body, which acts as an amplifier to radiate the sound. In this contribution, a procedure to create a numerical finite element (FE) model of a classical guitar with the help of experimental data is presented. The geometry of the guitar is reverse-engineered from computed tomography scans to a very high level of detail, and care is taken in including all necessary physical influences. All of the five different types of wood used in the guitar are modeled with their corresponding orthotropic material characteristics, and the fluid-structure interaction between the guitar body and the enclosed air is taken into account by discretizing the air volume inside the guitar with FEs in addition to the discretization of the structural parts. Besides the numerical model, an experimental setup is proposed to identify the modal parameters of a guitar. The procedure concludes with determining reasonable material properties for the numerical model using experimental data. The quality of the resulting model is demonstrated by comparing the numerically calculated and experimentally identified modal parameters. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/10.0005310 |