Valorization of date juice by the production of lipopeptide biosurfactants by a Bacillus mojavensis BI2 strain: bioprocess optimization by response surface methodology and study of surface activities

Lipopeptides biosurfactants (BioS) are natural surface-active compounds produced by a variety of microorganisms. They have great interest in environmental, biomedical and agro-industrial fields. However their large-scale application and production is limited by the cost of culture media and the low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2021-11, Vol.44 (11), p.2315-2330
Hauptverfasser: Mnif, Inès, Bouallegue, Amir, Mekki, Salwa, Ghribi, Dhouha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipopeptides biosurfactants (BioS) are natural surface-active compounds produced by a variety of microorganisms. They have great interest in environmental, biomedical and agro-industrial fields. However their large-scale application and production is limited by the cost of culture media and the low yield of production. Therefore, the improvement of the production yields and the development of efficient and cost-effective bioprocess became of a great interest. In this aim, we applied the response surface method to optimize an economic BioS production by a newly isolated strain Bacillus mojavensis BI2 on date Juice called “Luegmi” as unique carbon and nitrogen source. Using a Box-Bhenken design, we studied the effect of three independent variables on lipopeptide production; Leugmi concentration, Na 2 HPO 4 and incubation time. The results of this study showed that Leugmi concentration at 25%, Na 2 HPO 4 at 0.1% and incubation time of 24 h were optimal conditions for BioS  production, with a maximum Surface Tension (ST) decreasing capacity of 55% corresponding to 27 mN/m and an Oil Dispersing Activity (ODA) of 30 cm 2 corresponding to a diameter of 6 cm. Preliminary characterization of the BioS produced on Luegmi by UV-Spectra and Thin Layer Chromatography showed its lipopeptide nature. Physic-chemical characterization of the produced lipopeptide on Leugmi showed its great surface activities and stabilities at different pH, temperature and salts concentration. The results of this study suggested that Leugmi, an agricultural byproducts can be used as a low-cost substrate to enhance the yield of lipopeptide BioS with great surface activities for potential environmental application.
ISSN:1615-7591
1615-7605
DOI:10.1007/s00449-021-02606-7