Pure modulation and accurate measurement of optical beam’s tilt and displacement
We developed a tilt modulation technique of a laser beam with a wedged crystal. Combined with a phase-compensating crystal, a pure tilt modulation with a wide bandwidth (actually determined by the bandwidth of electro-optic crystals) is realized. By Fourier transformation with a lens, the tilt signa...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2021-06, Vol.92 (6), p.064504-064504 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We developed a tilt modulation technique of a laser beam with a wedged crystal. Combined with a phase-compensating crystal, a pure tilt modulation with a wide bandwidth (actually determined by the bandwidth of electro-optic crystals) is realized. By Fourier transformation with a lens, the tilt signal is transformed into displacement. With homodyne detection using a local oscillator of the first-order Hermite–Gauss mode (HG10) and a 4F phase-monitoring system, we measure the displacement and tilt of a laser probe beam. This technique can be used in metrology, such as Newtonian gravitational constant determination and gravitational wave detection, or the calibration of a spatial sensor, such as tilt/displacement sensors. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0050550 |