A multi-modal delivery strategy for spinal cord regeneration using a composite hydrogel presenting biophysical and biochemical cues synergistically

Extensive tissue engineering studies have supported the enhanced spinal cord regeneration by implantable scaffolds loaded with bioactive cues. However, scaffolds with single-cue delivery showed unsatisfactory effects, most likely due to the complex nature of hostile niches in the lesion area. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2021-09, Vol.276, p.120971-120971, Article 120971
Hauptverfasser: Man, Weitao, Yang, Shuhui, Cao, Zheng, Lu, Jiaju, Kong, Xiangdong, Sun, Xiaodan, Zhao, Lingyun, Guo, Yi, Yao, Shenglian, Wang, Guihuai, Wang, Xiumei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extensive tissue engineering studies have supported the enhanced spinal cord regeneration by implantable scaffolds loaded with bioactive cues. However, scaffolds with single-cue delivery showed unsatisfactory effects, most likely due to the complex nature of hostile niches in the lesion area. In this regard, strategies of multi-modal delivery of multiple heterogeneous cell-regulatory cues are unmet needs for enhancing spinal cord repair, which requires a thorough understanding of the regenerative niche associated with spinal cord injury. Here, by combining hierarchically aligned fibrin hydrogel (AFG) and functionalized self-assembling peptides (fSAP), a novel multifunctional nanofiber composite hydrogel AFG/fSAP characterized with interpenetrating network is designed. Serving as a source of both biophysical and biochemical cues, AFG/fSAP can facilitate spinal cord regeneration via guiding regenerated tissues, accelerating axonal regrowth and remyelination, and promoting angiogenesis. Giving the synergistic effect of multiple cues, AFG/fSAP implantation contributes to anatomical, electrophysiological, and motor functional restorations in rats with spinal cord hemisection. This study provides a novel multi-modal approach for regeneration in central nervous system, which has potentials for clinical practice of spinal cord injury.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2021.120971