High-Throughput Analysis of Tissue-Embedded Single Cells by Mass Spectrometry with Bimodal Imaging and Object Recognition
In biological tissues, cell-to-cell variations stem from the stochastic and modulated expression of genes and the varying abundances of corresponding proteins. These variations are then propagated to downstream metabolite products and result in cellular heterogeneity. Mass spectrometry imaging (MSI)...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-07, Vol.93 (28), p.9677-9687 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In biological tissues, cell-to-cell variations stem from the stochastic and modulated expression of genes and the varying abundances of corresponding proteins. These variations are then propagated to downstream metabolite products and result in cellular heterogeneity. Mass spectrometry imaging (MSI) is a promising tool to simultaneously provide spatial distributions for hundreds of biomolecules without the need for labels or stains. Technological advances in MSI instrumentation for the direct analysis of tissue-embedded single cells are dominated by improvements in sensitivity, sample pretreatment, and increased spatial resolution but are limited by low throughput. Herein, we introduce a bimodal microscopy imaging system combined with fiber-based laser ablation electrospray ionization (f-LAESI) MSI with improved throughput ambient analysis of tissue-embedded single cells (n > 1000) to provide insight into cellular heterogeneity. Based on automated image analysis, accurate single-cell sampling is achieved by f-LAESI leading to the discovery of cellular phenotypes characterized by differing metabolite levels. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c00569 |