Realization of Distinct Mechano- and Piezochromic Behaviors via Alkoxy Chain Length-Modulated Phosphorescent Properties and Multidimensional Self-Assembly Structures of Dinuclear Platinum(II) Complexes
In this work, through the introduction of different lengths of alkoxy chains to the dinuclear cyclometalated platinum(II) complexes, the apparent color, solubility, luminescence properties, and self-assembly behaviors have been remarkably modulated. In the solid state, the luminescence properties h...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-07, Vol.143 (28), p.10659-10667 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, through the introduction of different lengths of alkoxy chains to the dinuclear cyclometalated platinum(II) complexes, the apparent color, solubility, luminescence properties, and self-assembly behaviors have been remarkably modulated. In the solid state, the luminescence properties have been found to arise from emission origins that switch between the 3MMLCT excited state in the red solids and the 3IL excited state in the yellow state, depending on the alkoxy chain lengths. The luminescence of the yellow solids is found to show obvious bathochromic shifts under mechanical grinding and decreased intensity under controllable hydrostatic pressure. However, the emission of the red solids exhibits both a bathochromic shift and reduced intensity due to the isotropic compression-induced shortening of the Pt···Pt and π–π distances. By combining the data obtained from X-ray diffraction (XRD), infrared (IR), and X-ray single crystal structure, a better understanding of the relationship between molecular aggregation and photophysical properties has been realized, suggesting that the length of the alkoxy chains plays an important role in governing the supramolecular assemblies. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.1c04200 |