Laser soliton microcombs heterogeneously integrated on silicon
The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang et al. demonstrate that the e...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-07, Vol.373 (6550), p.99-103 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang
et al.
demonstrate that the entire system, the laser-pumping system and the comb-generating microresonators, can be combined into an integrated silicon-based platform. Compatibility with foundry fabrication methods will enable this innovation to have a major impact on coherent communications, optical interconnects, and low-noise microwave generation.
Science
, abh2076, this issue p.
99
Optical microresonator frequency combs are realized in an integrated Si-based platform.
Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si
3
N
4
) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si
3
N
4
microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.abh2076 |