ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy Detection

Diabetic retinopathy, an eye disease commonly afflicting diabetic patients, can result in loss of vision if prompt detection and treatment are not done in the early stages. Once the symptoms are identified, the severity level of the disease needs to be classified for prescribing the right medicine....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (11), p.3883, Article 3883
Hauptverfasser: Yaqoob, Muhammad Kashif, Ali, Syed Farooq, Bilal, Muhammad, Hanif, Muhammad Shehzad, Al-Saggaf, Ubaid M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetic retinopathy, an eye disease commonly afflicting diabetic patients, can result in loss of vision if prompt detection and treatment are not done in the early stages. Once the symptoms are identified, the severity level of the disease needs to be classified for prescribing the right medicine. This study proposes a deep learning-based approach, for the classification and grading of diabetic retinopathy images. The proposed approach uses the feature map of ResNet-50 and passes it to Random Forest for classification. The proposed approach is compared with five state-of-the-art approaches using two category Messidor-2 and five category EyePACS datasets. These two categories on the Messidor-2 dataset include 'No Referable Diabetic Macular Edema Grade (DME)' and 'Referable DME' while five categories consist of 'Proliferative diabetic retinopathy', 'Severe', 'Moderate', 'Mild', and 'No diabetic retinopathy'. The results show that the proposed approach outperforms compared approaches and achieves an accuracy of 96% and 75.09% for these datasets, respectively. The proposed approach outperforms six existing state-of-the-art architectures, namely ResNet-50, VGG-19, Inception-v3, MobileNet, Xception, and VGG16.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21113883