Dual-Motor Synchronization Control Design Based on Adaptive Neural Networks Considering Full-State Constraints and Partial Asymmetric Dead-Zone

This paper proposes a command filtering backstepping (CFB) scheme with full-state constraints by leading into time-varying barrier Lyapunov functions (T-BLFs) for a dual-motor servo system with partial asymmetric dead-zone. Firstly, for the convenience of the controller design, the conventional part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (13), p.4261, Article 4261
Hauptverfasser: Jin, Chunhong, Cai, Mingjie, Xu, Zhihao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a command filtering backstepping (CFB) scheme with full-state constraints by leading into time-varying barrier Lyapunov functions (T-BLFs) for a dual-motor servo system with partial asymmetric dead-zone. Firstly, for the convenience of the controller design, the conventional partial asymmetric dead-zone model was replaced with a new smooth differentiable model owing to its non-smoothness. Secondly, neural networks (NNs) were utilized to approximate the nonlinearity that exists in the dead-zone model, improving the control performance. In addition, CFB was utilized to deal with the inherent computational explosion problem of the traditional backstepping method, and an error compensation mechanism was introduced to further reduce the filtering errors. Then, by applying the T-BLF to the CFB process, the states of the system never violated the prescribed constraints, and all signals in the dual-motor servo system were bounded. The tracking error and synchronization error could converge to a small desired neighborhood of the origin. In the end, the effectiveness of the proposed control scheme was verified through simulations.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21134261