Progress in phase-sensitive sum frequency generation spectroscopy

Sum frequency generation (SFG) spectroscopy is a unique and powerful tool for investigating surfaces and interfaces at the molecular level. Phase-sensitive SFG (PS-SFG) is an upgraded technique that can overcome the inherent drawbacks of conventional SFG. Here we review several methods of PS-SFG dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-09, Vol.23 (34), p.18253-18267
Hauptverfasser: Yamaguchi, Shoichi, Otosu, Takuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sum frequency generation (SFG) spectroscopy is a unique and powerful tool for investigating surfaces and interfaces at the molecular level. Phase-sensitive SFG (PS-SFG) is an upgraded technique that can overcome the inherent drawbacks of conventional SFG. Here we review several methods of PS-SFG developed and reported in 1990-2020. We introduce how and by which group each PS-SFG method was designed and built in terms of interferometer implementation for optical heterodyne detection, with one exception of a recent numerical method that does not rely on interferometry. We also discuss how PS-SFG solved some typical problems for aqueous interfaces that were once left open by conventional SFG. These problems and their solutions are good examples to demonstrate why PS-SFG is essential. In addition, we briefly note a few terminology issues related with PS-SFG to avoid confusion. Representative methods of surface-selective phase-sensitive sum frequency generation spectroscopy are reviewed in terms of interferometer implementation for optical heterodyne detection.
ISSN:1463-9076
1463-9084
DOI:10.1039/d1cp01994e