Discriminatory Detection of ssDNA by Surface-Enhanced Raman Spectroscopy (SERS) and Tree-Based Support Vector Machine (Tr-SVM)

We report label-free detection of 86-base single-stranded DNA (ssDNA) gene segments by surface-enhanced Raman spectroscopy (SERS). The use of a slippery liquid infused porous (SLIP) membrane induced aggregation of 43 nm gold nanoparticles and ssDNA upon pin-free droplet evaporation. The combined SLI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-07, Vol.93 (27), p.9319-9328
Hauptverfasser: Kang, Seju, Kim, Inyoung, Vikesland, Peter J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report label-free detection of 86-base single-stranded DNA (ssDNA) gene segments by surface-enhanced Raman spectroscopy (SERS). The use of a slippery liquid infused porous (SLIP) membrane induced aggregation of 43 nm gold nanoparticles and ssDNA upon pin-free droplet evaporation. The combined SLIPSERS approach generates significant numbers of SERS hot-spots and enabled detection at the 100 nM level of mecA and intI1 gene segmentstwo genes of interest in the context of antibiotic resistance. Tree-based multiclass support vector machine (Tr-SVM) classifiers were built to discriminate SERS spectra of 12 different gene sequences obtained by SLIPSERS: mecA, intI1, as well as analogues of mecA and intI1, respectively, with 2–10 base mismatches, and two random sequences. The trained predictive Tr-SVM classifiers correctly identified each gene sequence with a prediction accuracy of ∼90%. This study illustrates a novel means for discriminatory label-free SERS detection of ssDNA enabled by Tr-SVM.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c04576