Genome analysis of Streptomyces sp. UH6 revealed the presence of potential chitinolytic machinery crucial for chitosan production

Summary Chitosan and its derivatives have numerous applications in wastewater treatment as bio‐coagulants, flocculants and bio‐adsorbents against both particulate and dissolved pollutants. Chitinolytic bacteria secrete an array of enzymes, which play crucial role in chitin to chitosan conversion. Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology reports 2022-06, Vol.14 (3), p.431-442
Hauptverfasser: Duhsaki, Lal, Mukherjee, Saumashish, Rani, Tirupaati Swaroopa, Madhuprakash, Jogi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Chitosan and its derivatives have numerous applications in wastewater treatment as bio‐coagulants, flocculants and bio‐adsorbents against both particulate and dissolved pollutants. Chitinolytic bacteria secrete an array of enzymes, which play crucial role in chitin to chitosan conversion. Consequently, there is a growing demand for identification and characterization of novel bacterial isolates with potential implications in chitosan production. We describe genomic features of the new isolate Streptomyces sp. UH6. Analysis of the 6.51 Mb genome revealed the GC content as 71.95% and presence of 6990 coding sequences of which 63% were functionally annotated. Further, we identified two possible chitin‐utilization pathways, which employ secreted enzymes like lytic polysaccharide monooxygenases and family‐18 glycoside hydrolases (GHs). More importantly, the genome has six family‐4 polysaccharide deacetylases with probable role in chitin to chitosan conversion, as well as two chitosanases belonging to GH46 and GH75 families. In addition, the gene clusters, dasABC and ngcEFG coding for transporters, which mediate the uptake of N,N′‐diacetylchitobiose and N‐acetyl‐d‐glucosamine were identified. Several genes responsible for hydrolysis of other polysaccharides and fermentation of sugars were also identified. Taken together, the phylogenetic and genomic analyses suggest that the isolate Streptomyces sp. UH6 secretes potential chitin‐active enzymes responsible for chitin to chitosan conversion.
ISSN:1758-2229
1758-2229
DOI:10.1111/1758-2229.12986