Involvement of an FNR-like oxygen sensor in Komagataeibacter medellinensis for survival under oxygen depletion

During acetic acid fermentation, acetic acid bacteria face oxygen depletion stress caused by the vigorous oxidation of ethanol to acetic acid. However, the molecular mechanisms underlying the response to oxygen depletion stress remain largely unknown. Here, we focused on an oxygen-sensing FNR homolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2021-08, Vol.85 (9), p.2065-2075
Hauptverfasser: Watanabe, Seiji, Shirai, Mutsunori, Kishi, Mikiya, Ohnishi, Yasuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During acetic acid fermentation, acetic acid bacteria face oxygen depletion stress caused by the vigorous oxidation of ethanol to acetic acid. However, the molecular mechanisms underlying the response to oxygen depletion stress remain largely unknown. Here, we focused on an oxygen-sensing FNR homolog, FnrG, in Komagataeibacter medellinensis. Comparative transcriptomic analysis between the wild-type and fnrG-disrupted strains revealed that FnrG upregulated 8 genes (fold change >3). Recombinant FnrG bound to a specific DNA sequence only when FnrG was reconstituted anaerobically. An operon consisting of acetate kinase and xylulose-5-phosphate/fructose-6-phosphate phosphoketolase genes was found to be an FnrG regulon involved in cell survival under oxygen-limiting conditions. Moreover, a strain that overexpressed these 2 genes accumulated more acetic acid than the wild-type strain harboring an empty vector. Thus, these 2 genes could be new targets for the molecular breeding of acetic acid bacteria with high acetic acid productivity.
ISSN:1347-6947
1347-6947
DOI:10.1093/bbb/zbab121