Simultaneous Refolding of Wheat Proteins and Soy Proteins Forming Novel Antibiotic Superstructures by Carrying Eugenol

Essential oils (EOs) are natural antibiotic chemicals for food preservation; however, their use is challenging due to low solubility and high volatility. In this study, hybrid protein particles with hydrophobic interiors and colloidal stability were designed to carry hydrophobic eugenol with enhance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2021-07, Vol.69 (27), p.7698-7708
Hauptverfasser: He, Jian, Zong, Yucheng, Wang, Ren, Feng, Wei, Chen, Zhengxing, Wang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Essential oils (EOs) are natural antibiotic chemicals for food preservation; however, their use is challenging due to low solubility and high volatility. In this study, hybrid protein particles with hydrophobic interiors and colloidal stability were designed to carry hydrophobic eugenol with enhanced storage and thermal stability. Stable self-emulsified delivery systems (SEDSs) were facilitated by simply mixing eugenol with wheat proteins (WPs) and soy proteins (SPs) at pH 12 prior to neutralization. This strategy enabled protein co-folding that permitted the entrapment of eugenol with a high entrapment capacity of ca. 500 mg/g protein. Control over the SP/WP ratios contributed to tunable microstructural conformations, which in turn modulated the stability of SEDSs with prominent bacteriostatic properties against fungi when applied to rice cakes during long-term storage. These results underline the feasibility of properly utilizing EOs by binary protein structures, where the antibacterial properties of EOs could be manipulated coherently.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.1c01210