Rapid bacteria-detection platform based on magnetophoretic concentration, dielectrophoretic separation, and impedimetric detection
Most biosensors employ small sample quantities (less than 100 μL) for bacteria detection, thereby resulting in inaccurate low-concentration measurements. Detection performed using small sample volumes with low bacteria concentration may produce false-negative results. Therefore, sample pretreatment...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2021-08, Vol.1173, p.338696-338696, Article 338696 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most biosensors employ small sample quantities (less than 100 μL) for bacteria detection, thereby resulting in inaccurate low-concentration measurements. Detection performed using small sample volumes with low bacteria concentration may produce false-negative results. Therefore, sample pretreatment plays a critical role in accurate bacteria detection. This paper presents an impedimetric bacteria-detection sensor integrated with bacteria concentration and separation devices for rapid bacteria detection. Post conjugation using magnetic particles (MPs), the MP-conjugated bacteria (MP/Bac) are concentrated via magnetophoresis by a factor exceeding 100. In addition, MP/Bac are separated from MPs via dielectrophoresis to prevent occurrence of signal errors caused by MPs not conjugated with bacteria. Subsequently, concentrated MP/Bac are captured on a sensor electrode, and bacteria concentration is detected by measuring signal changes caused by the impedance difference between bacteria and the medium. The performance of the proposed bacteria-detection device was evaluated using a 5-mL homogenized cabbage sample injected with Staphylococcus aureus at 30 mL/h flow rate. The observed signal change was measured for 10 min using a sample with a concentration of 5–5 × 103 CFU/mL and was found to be approximately 0.34 mV at 50 CFU/mL; the limit of detection was 36 CFU/mL. These results confirm that the proposed device can detect low bacteria concentrations in food samples.
[Display omitted] |
---|---|
ISSN: | 0003-2670 1873-4324 |
DOI: | 10.1016/j.aca.2021.338696 |