Joint application of biochemical markers and imaging techniques in the accurate and early detection of glioblastoma

Glioblastoma is a primary brain tumor with the most metastatic effect in adults. Despite the wide range of multidimensional treatments, tumor heterogeneity is one of the main causes of tumor spread and gives great complexity to diagnostic and therapeutic methods. Therefore, featuring noble noninvasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pathology, research and practice research and practice, 2021-08, Vol.224, p.153528-153528, Article 153528
Hauptverfasser: Jafari, Seyed Hamed, Rabiei, Nikta, Taghizadieh, Mohammad, Mirazimi, Sayad Mohammad Ali, Kowsari, Hamed, Farzin, Mohammad Amin, Razaghi Bahabadi, Zahra, Rezaei, Samaneh, Mohammadi, Amir Hossein, Alirezaei, Zahra, Dashti, Fatemeh, Nejati, Majid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma is a primary brain tumor with the most metastatic effect in adults. Despite the wide range of multidimensional treatments, tumor heterogeneity is one of the main causes of tumor spread and gives great complexity to diagnostic and therapeutic methods. Therefore, featuring noble noninvasive prognostic methods that are focused on glioblastoma heterogeneity is perceived as an urgent need. Imaging neuro-oncological biomarkers including MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status, tumor grade along with other tumor characteristics and demographic features (e.g., age) are commonly referred to during diagnostic, therapeutic and prognostic processes. Therefore, the use of new noninvasive prognostic methods focused on glioblastoma heterogeneity is considered an urgent need. Some neuronal biomarkers, including the promoter methylation status of the promoter MGMT, the characteristics and grade of the tumor, along with the patient's demographics (such as age and sex) are involved in diagnosis, treatment, and prognosis. Among the wide array of imaging techniques, magnetic resonance imaging combined with the more physiologically detailed technique of H-magnetic resonance spectroscopy can be useful in diagnosing neurological cancer patients. In addition, intracranial tumor qualitative analysis and sometimes tumor biopsies help in accurate diagnosis. This review summarizes the evidence for biochemical biomarkers being a reliable biomarker in the early detection and disease management in GBM. Moreover, we highlight the correlation between Imaging techniques and biochemical biomarkers and ask whether they can be combined.
ISSN:0344-0338
1618-0631
DOI:10.1016/j.prp.2021.153528