Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks

Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-07, Vol.12 (26), p.6070-6077
Hauptverfasser: Wang, Bipeng, Chu, Weibin, Tkatchenko, Alexandre, Prezhdo, Oleg V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6077
container_issue 26
container_start_page 6070
container_title The journal of physical chemistry letters
container_volume 12
creator Wang, Bipeng
Chu, Weibin
Tkatchenko, Alexandre
Prezhdo, Oleg V
description Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.
doi_str_mv 10.1021/acs.jpclett.1c01645
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545591710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545591710</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-4e6b3c89848c252f6b26997a4c23ec0c1cf154d58561abe070ef6200e46d004f3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVgysqS1E9tJxqr8aaVSFhiYLOfigItrB9tR1W9PaDswMb073XsnvR9CtwRPCM7IVEKYbDowKsYJAUw4ZWdoRCpapgUp2fmf-RJdhbDBmFe4LEbofWmj8p0zMmr7kaydlY2W9bBB8uyMgt5In9zvrdxqCMliEBOd1dImOx0_k5mPutWgpUnWqvcHiTvnv8I1umilCermpGP09vjwOl-kq5en5Xy2SmXOi5hSxescyqqkJWQsa3md8aoqJIUsV4CBQEsYbVjJOJG1wgVWLc8wVpQ3GNM2H6O749_Ou-9ehSi2OoAyRlrl-iAyRhmrSEHwYM2PVvAuBK9a0Xm9lX4vCBa_IMUAUpxAihPIITU9pg5H13s71Pk38QO4DXr7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545591710</pqid></control><display><type>article</type><title>Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks</title><source>ACS Publications</source><creator>Wang, Bipeng ; Chu, Weibin ; Tkatchenko, Alexandre ; Prezhdo, Oleg V</creator><creatorcontrib>Wang, Bipeng ; Chu, Weibin ; Tkatchenko, Alexandre ; Prezhdo, Oleg V</creatorcontrib><description>Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c01645</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2021-07, Vol.12 (26), p.6070-6077</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-4e6b3c89848c252f6b26997a4c23ec0c1cf154d58561abe070ef6200e46d004f3</citedby><cites>FETCH-LOGICAL-a367t-4e6b3c89848c252f6b26997a4c23ec0c1cf154d58561abe070ef6200e46d004f3</cites><orcidid>0000-0001-5951-0337 ; 0000-0002-5140-7500 ; 0000-0003-0924-5867 ; 0000-0002-1012-4854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c01645$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c01645$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Wang, Bipeng</creatorcontrib><creatorcontrib>Chu, Weibin</creatorcontrib><creatorcontrib>Tkatchenko, Alexandre</creatorcontrib><creatorcontrib>Prezhdo, Oleg V</creatorcontrib><title>Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCVgysqS1E9tJxqr8aaVSFhiYLOfigItrB9tR1W9PaDswMb073XsnvR9CtwRPCM7IVEKYbDowKsYJAUw4ZWdoRCpapgUp2fmf-RJdhbDBmFe4LEbofWmj8p0zMmr7kaydlY2W9bBB8uyMgt5In9zvrdxqCMliEBOd1dImOx0_k5mPutWgpUnWqvcHiTvnv8I1umilCermpGP09vjwOl-kq5en5Xy2SmXOi5hSxescyqqkJWQsa3md8aoqJIUsV4CBQEsYbVjJOJG1wgVWLc8wVpQ3GNM2H6O749_Ou-9ehSi2OoAyRlrl-iAyRhmrSEHwYM2PVvAuBK9a0Xm9lX4vCBa_IMUAUpxAihPIITU9pg5H13s71Pk38QO4DXr7</recordid><startdate>20210708</startdate><enddate>20210708</enddate><creator>Wang, Bipeng</creator><creator>Chu, Weibin</creator><creator>Tkatchenko, Alexandre</creator><creator>Prezhdo, Oleg V</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5951-0337</orcidid><orcidid>https://orcid.org/0000-0002-5140-7500</orcidid><orcidid>https://orcid.org/0000-0003-0924-5867</orcidid><orcidid>https://orcid.org/0000-0002-1012-4854</orcidid></search><sort><creationdate>20210708</creationdate><title>Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks</title><author>Wang, Bipeng ; Chu, Weibin ; Tkatchenko, Alexandre ; Prezhdo, Oleg V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-4e6b3c89848c252f6b26997a4c23ec0c1cf154d58561abe070ef6200e46d004f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bipeng</creatorcontrib><creatorcontrib>Chu, Weibin</creatorcontrib><creatorcontrib>Tkatchenko, Alexandre</creatorcontrib><creatorcontrib>Prezhdo, Oleg V</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bipeng</au><au>Chu, Weibin</au><au>Tkatchenko, Alexandre</au><au>Prezhdo, Oleg V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-07-08</date><risdate>2021</risdate><volume>12</volume><issue>26</issue><spage>6070</spage><epage>6077</epage><pages>6070-6077</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.1c01645</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5951-0337</orcidid><orcidid>https://orcid.org/0000-0002-5140-7500</orcidid><orcidid>https://orcid.org/0000-0003-0924-5867</orcidid><orcidid>https://orcid.org/0000-0002-1012-4854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-07, Vol.12 (26), p.6070-6077
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2545591710
source ACS Publications
subjects Physical Insights into Materials and Molecular Properties
title Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpolating%20Nonadiabatic%20Molecular%20Dynamics%20Hamiltonian%20with%20Artificial%20Neural%20Networks&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Wang,%20Bipeng&rft.date=2021-07-08&rft.volume=12&rft.issue=26&rft.spage=6070&rft.epage=6077&rft.pages=6070-6077&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c01645&rft_dat=%3Cproquest_cross%3E2545591710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545591710&rft_id=info:pmid/&rfr_iscdi=true