Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks

Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-07, Vol.12 (26), p.6070-6077
Hauptverfasser: Wang, Bipeng, Chu, Weibin, Tkatchenko, Alexandre, Prezhdo, Oleg V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.1c01645