Comparison of strength of milled and conventionally processed PMMA complete-arch implant-supported immediate interim fixed dental prostheses
A typical conversion process of a complete-arch immediate loading protocol entails preparing holes in a complete denture for connection to interim copings, which reduces the strength of the prosthesis. The excellent mechanical properties of milled polymethyl methacrylate (PMMA) disks may provide int...
Gespeichert in:
Veröffentlicht in: | The Journal of prosthetic dentistry 2023-01, Vol.129 (1), p.221-227 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A typical conversion process of a complete-arch immediate loading protocol entails preparing holes in a complete denture for connection to interim copings, which reduces the strength of the prosthesis. The excellent mechanical properties of milled polymethyl methacrylate (PMMA) disks may provide interim prostheses with improved strength.
The purpose of this in vitro study was to measure the flexural strength and failure load of simulated acrylic resin immediate implant-supported interim prostheses fabricated by conventional processing and computer-aided manufacturing.
A master patient model was created with an acrylic resin base and 2 BioHorizons Internal 4.5-mm-diameter implants placed with a 21.5-mm span and multiunit abutments (MUA) tightened to place. Two groups with different prosthodontic designs were used: one represented the standard fixed prosthesis with support at each end (noncantilever, NC), and the other group represented the cantilever portion of the prosthesis (cantilever, C). Two connection designs of prosthesis blocks to MUA abutments were evaluated: one with typical holes in the prosthesis for capturing interim copings and one with a low-profile coping. For the heat-processed PMMA groups (HP/NC and HP/C), wax patterns were milled, and heat-polymerized denture base PMMA prostheses were processed. The milled PMMA groups (M/NC and M/C) were milled from a tooth-shaded PMMA disk for the prosthesis blocks. The milled low-profile groups (Mlp/NC and Mlp/C) had identical dimensions except that connection to the low-profile coping was designed with a cement space and a narrow diameter screw access hole and was milled from a PMMA disk. The failure load (N) of the cantilever prostheses was recorded, and for NC groups, the 3-point flexural strength formula (MPa) was calculated. The Weibull modulus, characteristic strength, and summary statistics were computed, and the groups were statistically analyzed with ANOVA and the post hoc Tukey test (α=.05).
The mean flexural strengths (MPa) were HP/NC=91.35 ±18.92; M/NC=143.94 ±36.79; Mlp/NC=117.06 ±13.86. Significant differences were found among groups (P |
---|---|
ISSN: | 0022-3913 1097-6841 |
DOI: | 10.1016/j.prosdent.2021.04.025 |