Perforated extensible 3-D hyperbolic secant lens antenna for directive antenna applications using additive manufacturing
In this paper, a novel three-dimensional (3-D) generalized hyperbolic secant (H-S) lens is first introduced using perforated dielectric material. The attractiveness of this new lens is its unique intrinsic flat shape characteristic and extensibility for different configuration scenarios, which provi...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-06, Vol.29 (12), p.18932-18949 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a novel three-dimensional (3-D) generalized hyperbolic secant (H-S) lens is first introduced using perforated dielectric material. The attractiveness of this new lens is its unique intrinsic flat shape characteristic and extensibility for different configuration scenarios, which provide a potential alternative design for a planar Luneburg and half Maxwell fish-eye lens based on a complex conformal mapping method. A high gain and wideband printed antipodal fermi antenna as a feeding source is employed in the proposed lens antenna prototype. The high radiation performance with low side lobe level of the fabricated lens prototype is validated from 8.2GHz to 12.5GHz, demonstrating 23.8 dBi realized gain at 10 GHz with 3-dB beamwidth of 9 degrees and 2-dB fractional gain bandwidth of 41.6%. Besides, the total radiation efficiency is above similar to 40% across all tested frequencies, which suggests the proposed H-S lens itself has a broadband response. The simplicity and low-cost fabrication using additive manufacturing of its lens design indicates great potential in broadband high directive antenna applications. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.426824 |