Research on direct shear strength characteristics of mechanically biologically treated waste

Mechanically and biologically treated (MBT) waste has significant characteristics such as high stability and low moisture content, which can reduce water, soil, and gas pollution in subsequent treatments. This pre-treatment method is environmentally friendly and sustainable and has become a popular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-11, Vol.28 (42), p.59844-59857
Hauptverfasser: Zhang, Zhenying, Zhang, Jiahe, Wang, Qiaona, Wang, Min, Nie, Chengyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanically and biologically treated (MBT) waste has significant characteristics such as high stability and low moisture content, which can reduce water, soil, and gas pollution in subsequent treatments. This pre-treatment method is environmentally friendly and sustainable and has become a popular research topic in the field of environmental geotechnical engineering. Using a direct shear test apparatus and five shearing rates (0.25, 1, 5, 10, and 20 mm/min), the shear strength characteristics of MBT waste at the Hangzhou Tianziling Landfill were studied. The results indicate the following: (1) With the increase in horizontal shear displacement, the shear stress of MBT waste gradually increases without a peak stress phenomenon, which is a displacement hardening curve; (2) the shear strength increases with an increase in the shearing displacement rate, and the sensitivity coefficient is 0.64–2.66; (3) a shear strength, shearing rate, and normal stress correlation model is established, and the model has a high degree of fit with the overall experimental data; (4) cohesion ( c ), internal friction angle ( φ ), and the logarithm of the shearing rate are linear; (5) the range of c of MBT waste is 22.32–39.51 kPa, and φ is 64.24–68.52°. Meanwhile, the test data are compared with the test data in the literature. The ranges of c and φ of municipal solid waste determined via the shear test are found to be wider than those of MBT waste. The results of this study can provide a reference for the stability calculation of MBT landfills.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-14935-x