Pressure measurement in gas flows using laser-induced grating lifetime

Optical diagnostics of gas-phase pressure are relatively unusual. In this work, we demonstrate a novel, rapid, and robust method to use laser-induced grating scattering (LIGS) to derive this property in real time. Previous pressure measurements with LIGS have employed a signal fitting method, but th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2021-05, Vol.60 (15), p.C131-C141
Hauptverfasser: Willman, Christopher, Le Page, Laurent M., Ewart, Paul, Williams, Benjamin A. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical diagnostics of gas-phase pressure are relatively unusual. In this work, we demonstrate a novel, rapid, and robust method to use laser-induced grating scattering (LIGS) to derive this property in real time. Previous pressure measurements with LIGS have employed a signal fitting method, but this is relatively time-consuming and requires specialist understanding. In this paper, we directly measure a decay lifetime from a LIGS signal and then employ a calibration surface constructed using a physics-based model to convert this value to pressure. This method was applied to an optically accessible single-cylinder internal combustion engine, yielding an accuracy of better than 10% at all tested conditions above atmospheric pressure. This new approach complements the existing strength of LIGS in precisely and accurately deriving temperature with a simple analysis method, by adding pressure information with a similarly simple method.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.419973