Pressure measurement in gas flows using laser-induced grating lifetime
Optical diagnostics of gas-phase pressure are relatively unusual. In this work, we demonstrate a novel, rapid, and robust method to use laser-induced grating scattering (LIGS) to derive this property in real time. Previous pressure measurements with LIGS have employed a signal fitting method, but th...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2021-05, Vol.60 (15), p.C131-C141 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical diagnostics of gas-phase pressure are relatively unusual. In this work, we demonstrate a novel, rapid, and robust method to use laser-induced grating scattering (LIGS) to derive this property in real time. Previous pressure measurements with LIGS have employed a signal fitting method, but this is relatively time-consuming and requires specialist understanding. In this paper, we directly measure a decay lifetime from a LIGS signal and then employ a calibration surface constructed using a physics-based model to convert this value to pressure. This method was applied to an optically accessible single-cylinder internal combustion engine, yielding an accuracy of better than 10% at all tested conditions above atmospheric pressure. This new approach complements the existing strength of LIGS in precisely and accurately deriving temperature with a simple analysis method, by adding pressure information with a similarly simple method. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.419973 |