Parallel cluster identification for multidimensional lattices

The cluster identification problem is a variant of connected component labeling that arises in cluster algorithms for spin models in statistical physics. We present a multidimensional version of K.P. Belkhale and P. Banerjee's quad algorithm (1992) for connected component labeling on distribute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 1997-11, Vol.8 (11), p.1089-1097
Hauptverfasser: Fink, S.J., Huston, C., Baden, S.B., Jansen, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cluster identification problem is a variant of connected component labeling that arises in cluster algorithms for spin models in statistical physics. We present a multidimensional version of K.P. Belkhale and P. Banerjee's quad algorithm (1992) for connected component labeling on distributed memory parallel computers. Our extension abstracts away extraneous spatial connectivity information in more than two dimensions, simplifying implementation for higher dimensionality. We identify two types of locality present in cluster configurations, and present optimizations to exploit locality for better performance. Performance results from 2D, 3D, and 4D Ising model simulations with Swendson-Wang dynamics show that the optimizations improve performance by 20-80 percent.
ISSN:1045-9219
1558-2183
DOI:10.1109/71.642944