Repair and misrepair of heavy-ion-induced chromosomal damage

The premature chromosome condensation (PCC) technique was used to investigate chromosomal damage, repair, and misrepair in the G 1 phase of a human/hamster hybrid cell line that contains a single human chromosome. Plateau-phase cell cultures were exposed to either x-rays or a 425 MeV/u beam of neon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 1989, Vol.9 (10), p.83-89
Hauptverfasser: Goodwin, E., Blakely, E., Ivery, G., Tobias, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The premature chromosome condensation (PCC) technique was used to investigate chromosomal damage, repair, and misrepair in the G 1 phase of a human/hamster hybrid cell line that contains a single human chromosome. Plateau-phase cell cultures were exposed to either x-rays or a 425 MeV/u beam of neon ions near the Bragg peak where the LET is 183 keV/μm. An in situ hybridization technique coupled to fluorescent staining of PCC spreads confirmed the linearity of the dose response for initial chromatin breakage in the human chromosome to high doses (1600 cGy x-ray or 1062 cGy Ne). On Giemsa-stained slides, initial chromatin breakage in the total genome and the rejoining kinetics of these breaks were determined. As a measure of chromosomal misrepair, ring PCC aberrations were also scored. Ne ions were about 1.5 x more effective per unit dose compared to x-rays at producing the initially measured chromatin breakage. 90% of the x-ray-induced breaks rejoined in cells incubated at 37°C after exposure. In contrast, only 50% of Ne-ion-induced breaks rejoined. In the irradiated G 1 cells, ring PCC aberrations increased with time apparently by first order kinetics after either x-ray or Ne exposures. However, far fewer rings formed in Ne-irradiated cells after a dose giving a comparable initial number of chromatin breaks. Following x-ray exposures, the yield of rings formed after long repair times (6 to 9 hrs) fit a quadratic dose-response curve. These results indicate quantitative and qualitative differences in the chromosomal lesions induced by low- and high-LET radiations.
ISSN:0273-1177
1879-1948
DOI:10.1016/0273-1177(89)90425-0