Investigation of clinical target volume segmentation for whole breast irradiation using three-dimensional convolutional neural networks with gradient-weighted class activation mapping
This study aims to implement three-dimensional convolutional neural networks (3D-CNN) for clinical target volume (CTV) segmentation for whole breast irradiation and investigate the focus of 3D-CNNs during decision-making using gradient-weighted class activation mapping (Grad-CAM). A 3D-UNet CNN was...
Gespeichert in:
Veröffentlicht in: | Radiological physics and technology 2021-09, Vol.14 (3), p.238-247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to implement three-dimensional convolutional neural networks (3D-CNN) for clinical target volume (CTV) segmentation for whole breast irradiation and investigate the focus of 3D-CNNs during decision-making using gradient-weighted class activation mapping (Grad-CAM). A 3D-UNet CNN was adopted to conduct automatic segmentation of the CTV for breast cancer. The 3D-UNet was trained using three datasets of left-, right-, and both left- and right-sided breast cancer patients. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC). Grad-CAM was applied to trained CNNs. The DSCs for the datasets of the left-, right-, and both left- and right-sided breasts were on an average 0.88, 0.89, and 0.85, respectively. The Grad-CAM heatmaps showed that the 3D-UNet used for segmentation determined the CTV region from the target-side breast tissue and by referring to the opposite-side breast. Although the size of the dataset was limited, DSC ≥ 0.85 was achieved for the segmentation of breast CTV using the 3D-UNet. Grad-CAM indicates the applicable scope and limitations of using a CNN by indicating the focus of such networks during decision-making. |
---|---|
ISSN: | 1865-0333 1865-0341 |
DOI: | 10.1007/s12194-021-00620-8 |