Rayleigh scatterer-induced steady exceptional points of stable-island modes in a deformed optical microdisk
A formation of second-order non-Hermitian degeneracies, called exceptional points (EPs), in a chaotic oval-shaped dielectric microdisk is studied. Different symmetric optical modes localized on a stable period-3 orbit coalesce to form chiral EPs. Unlike a circular microdisk perturbed by two scattere...
Gespeichert in:
Veröffentlicht in: | Optics letters 2021-06, Vol.46 (12), p.2980-2983 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A formation of second-order non-Hermitian degeneracies, called exceptional points (EPs), in a chaotic oval-shaped dielectric microdisk is studied. Different symmetric optical modes localized on a stable period-3 orbit coalesce to form chiral EPs. Unlike a circular microdisk perturbed by two scatterers (CTS), our proposed system requires only one scatterer to build chiral EPs. The scatterer positions for counterpropagating EP modes are far distant from one another and almost steady against varying scatterer sizes in contrast to the CTS case. Our results can contribute to establishing a more solid platform for EP-based-device applications with flexibility and easy feasibility in obtaining EPs. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.426470 |