Impacts of global warming on marine microbial communities
Global warming in ocean ecosystems alters temperature, acidification, oxygen content, circulation, stratification, and nutrient inputs. Microorganisms play a dominant role in global biogeochemical cycles crucial for a planet's sustainability. Since microbial communities are highly dependent on...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2021-10, Vol.791, p.147905-147905, Article 147905 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global warming in ocean ecosystems alters temperature, acidification, oxygen content, circulation, stratification, and nutrient inputs. Microorganisms play a dominant role in global biogeochemical cycles crucial for a planet's sustainability. Since microbial communities are highly dependent on the temperature factor, fluctuations in the same will lead to adverse effects on the microbial community organization. Throughout the Ocean, increase in evaporation rates causes the surface mixed layer to become shallower. This intensified stratification inhibits vertical transport of nutrient supplies. Such density driven processes will decrease oxygen solubility in surface waters leading to significant decrease of oxygen from future Ocean. Metabolism and diversity of microbes along with ocean biogeochemistry will be at great risk due to global warming and its related effects. As a response to the changes in temperature, alteration in the distribution of phytoplankta communities is observed all over the planet, creating changes in the primary production of the ocean causing massive impact on the biosphere. Marine microbial communities try to adapt to the changing ocean environmental conditions by responding with biogeographic range shifts, community structure modifications, and adaptive evolution. Persistence of this climate change on ocean ecosystems, in future, will pose serious threat to the metabolism and distribution of marine microbes leading to fluctuations in the biogeochemical cycles thereby affecting the overall ecosystem functioning. Genomics plays an important role in marine microbial research by providing tools to study the association between environment and organisms. The ecological and genomic perspectives of marine microbes are being investigated to design effective models to understand their physiology and evolution in a changing ocean. Mesocosm/microcosm experimental studies and field studies are in the need of the hour to evaluate the impact of climate shifts on microbial genesis.
[Display omitted]
•Metatranscriptome studies reveal stress-associated responses on warming induced microbial communities.•Nutrient availability and temperature will increase primary production and diatom biomass in warmer Southern Ocean.•Focus on organisms to be negatively affected by global warming can be ascertained by species with phenotypic plasticity.•Vibrio harveyi, a potent pathogen, is likely to spread in the marine microbiota as a response to global warming. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2021.147905 |