Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs

Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Within 32 239 individuals of the UK Biobank prospective cohort who underwent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation. Cardiovascular imaging 2021-06, Vol.14 (6), p.e012281-e012281
Hauptverfasser: Khurshid, Shaan, Friedman, Samuel, Pirruccello, James P., Di Achille, Paolo, Diamant, Nathaniel, Anderson, Christopher D., Ellinor, Patrick T., Batra, Puneet, Ho, Jennifer E., Philippakis, Anthony A., Lubitz, Steven A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e012281
container_issue 6
container_start_page e012281
container_title Circulation. Cardiovascular imaging
container_volume 14
creator Khurshid, Shaan
Friedman, Samuel
Pirruccello, James P.
Di Achille, Paolo
Diamant, Nathaniel
Anderson, Christopher D.
Ellinor, Patrick T.
Batra, Puneet
Ho, Jennifer E.
Philippakis, Anthony A.
Lubitz, Steven A.
description Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]). In independent test sets (UK Biobank [n=4903] and Mass General Brigham [MGB, n=1371]), we assessed correlation between LVM-AI predicted and CMR-derived LV mass and compared LVH discrimination using LVM-AI versus traditional ECG-based rules (ie, Sokolow-Lyon, Cornell, lead aVL rule, or any ECG rule). In the UK Biobank and an ambulatory MGB cohort (MGB outcomes, n=28 612), we assessed associations between LVM-AI predicted LVH and incident cardiovascular outcomes using age- and sex-adjusted Cox regression. LVM-AI predicted LV mass correlated with CMR-derived LV mass in both test sets, although correlation was greater in the UK Biobank (r=0.79) versus MGB (r=0.60, P
doi_str_mv 10.1161/CIRCIMAGING.120.012281
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2541318963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541318963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4703-81d9ca5795ad57c4b27f60bf36a2ca2f6089643ee84a11ff78e6e8b6812288e83</originalsourceid><addsrcrecordid>eNpNkctO3DAUhq2KqlzaV0BesslwfInjLFGAYaQBKtR2a3mcEyYlkwTbAc2u79A37JPUaACxOmfx_f-RvkPIMYMZY4qdVou7anF9Nl_czGeMwwwY55p9IgeslDwD0LD3Yd8nhyH8BlACcv2F7AvJuCoUPyDTOeJIl2h93_b3NA70u8e6dZFW1tetdfTa3vcYW0fvMAy97R3--_P3HH37hHUKNpH-wj761k2d9YkOgdq-plfbEX30w7je0ks_bCjjWTpT04tqHr6Sz43tAn57nUfk5-XFj-oqW97OF9XZMnOyAJFpVpfO5kWZ2zovnFzxolGwaoSy3Fmedl0qKRC1tIw1TaFRoV4p_SJDoxZH5GTXO_rhccIQzaYNDrvO9jhMwfBcMsFSiUio2qHODyF4bMzo2431W8PAvCg3H5SbpNzslKfg8euNabXB-j325jgBcgc8D11EHx666Rm9WaPt4jq1CFHIUmccOAMFAOljAEL8B_fkjVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541318963</pqid></control><display><type>article</type><title>Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Khurshid, Shaan ; Friedman, Samuel ; Pirruccello, James P. ; Di Achille, Paolo ; Diamant, Nathaniel ; Anderson, Christopher D. ; Ellinor, Patrick T. ; Batra, Puneet ; Ho, Jennifer E. ; Philippakis, Anthony A. ; Lubitz, Steven A.</creator><creatorcontrib>Khurshid, Shaan ; Friedman, Samuel ; Pirruccello, James P. ; Di Achille, Paolo ; Diamant, Nathaniel ; Anderson, Christopher D. ; Ellinor, Patrick T. ; Batra, Puneet ; Ho, Jennifer E. ; Philippakis, Anthony A. ; Lubitz, Steven A.</creatorcontrib><description>Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]). In independent test sets (UK Biobank [n=4903] and Mass General Brigham [MGB, n=1371]), we assessed correlation between LVM-AI predicted and CMR-derived LV mass and compared LVH discrimination using LVM-AI versus traditional ECG-based rules (ie, Sokolow-Lyon, Cornell, lead aVL rule, or any ECG rule). In the UK Biobank and an ambulatory MGB cohort (MGB outcomes, n=28 612), we assessed associations between LVM-AI predicted LVH and incident cardiovascular outcomes using age- and sex-adjusted Cox regression. LVM-AI predicted LV mass correlated with CMR-derived LV mass in both test sets, although correlation was greater in the UK Biobank (r=0.79) versus MGB (r=0.60, P&lt;0.001 for both). When compared with any ECG rule, LVM-AI demonstrated similar LVH discrimination in the UK Biobank (LVM-AI c-statistic 0.653 [95% CI, 0.608 -0.698] versus any ECG rule c-statistic 0.618 [95% CI, 0.574 -0.663], P=0.11) and superior discrimination in MGB (0.621; 95% CI, 0.592 -0.649 versus 0.588; 95% CI, 0.564 -0.611, P=0.02). LVM-AI-predicted LVH was associated with incident atrial fibrillation, myocardial infarction, heart failure, and ventricular arrhythmias. Deep learning-inferred LV mass estimates from 12-lead ECGs correlate with CMR-derived LV mass, associate with incident cardiovascular disease, and may improve LVH discrimination compared to traditional ECG rules.</description><identifier>ISSN: 1942-0080</identifier><identifier>ISSN: 1941-9651</identifier><identifier>EISSN: 1942-0080</identifier><identifier>DOI: 10.1161/CIRCIMAGING.120.012281</identifier><identifier>PMID: 34126762</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>Artificial Intelligence ; Deep Learning ; Electrocardiography - methods ; Female ; Follow-Up Studies ; Heart Ventricles - diagnostic imaging ; Humans ; Hypertrophy, Left Ventricular - diagnosis ; Male ; Middle Aged ; Prospective Studies</subject><ispartof>Circulation. Cardiovascular imaging, 2021-06, Vol.14 (6), p.e012281-e012281</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4703-81d9ca5795ad57c4b27f60bf36a2ca2f6089643ee84a11ff78e6e8b6812288e83</citedby><cites>FETCH-LOGICAL-c4703-81d9ca5795ad57c4b27f60bf36a2ca2f6089643ee84a11ff78e6e8b6812288e83</cites><orcidid>0000-0002-7987-4768 ; 0000-0001-9256-0678 ; 0000-0002-0053-2002 ; 0000-0002-9599-4866 ; 0000-0002-2067-0533 ; 0000-0001-6822-0593 ; 0000-0001-6088-4037 ; 0000-0002-2840-4539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3685,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34126762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khurshid, Shaan</creatorcontrib><creatorcontrib>Friedman, Samuel</creatorcontrib><creatorcontrib>Pirruccello, James P.</creatorcontrib><creatorcontrib>Di Achille, Paolo</creatorcontrib><creatorcontrib>Diamant, Nathaniel</creatorcontrib><creatorcontrib>Anderson, Christopher D.</creatorcontrib><creatorcontrib>Ellinor, Patrick T.</creatorcontrib><creatorcontrib>Batra, Puneet</creatorcontrib><creatorcontrib>Ho, Jennifer E.</creatorcontrib><creatorcontrib>Philippakis, Anthony A.</creatorcontrib><creatorcontrib>Lubitz, Steven A.</creatorcontrib><title>Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs</title><title>Circulation. Cardiovascular imaging</title><addtitle>Circ Cardiovasc Imaging</addtitle><description>Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]). In independent test sets (UK Biobank [n=4903] and Mass General Brigham [MGB, n=1371]), we assessed correlation between LVM-AI predicted and CMR-derived LV mass and compared LVH discrimination using LVM-AI versus traditional ECG-based rules (ie, Sokolow-Lyon, Cornell, lead aVL rule, or any ECG rule). In the UK Biobank and an ambulatory MGB cohort (MGB outcomes, n=28 612), we assessed associations between LVM-AI predicted LVH and incident cardiovascular outcomes using age- and sex-adjusted Cox regression. LVM-AI predicted LV mass correlated with CMR-derived LV mass in both test sets, although correlation was greater in the UK Biobank (r=0.79) versus MGB (r=0.60, P&lt;0.001 for both). When compared with any ECG rule, LVM-AI demonstrated similar LVH discrimination in the UK Biobank (LVM-AI c-statistic 0.653 [95% CI, 0.608 -0.698] versus any ECG rule c-statistic 0.618 [95% CI, 0.574 -0.663], P=0.11) and superior discrimination in MGB (0.621; 95% CI, 0.592 -0.649 versus 0.588; 95% CI, 0.564 -0.611, P=0.02). LVM-AI-predicted LVH was associated with incident atrial fibrillation, myocardial infarction, heart failure, and ventricular arrhythmias. Deep learning-inferred LV mass estimates from 12-lead ECGs correlate with CMR-derived LV mass, associate with incident cardiovascular disease, and may improve LVH discrimination compared to traditional ECG rules.</description><subject>Artificial Intelligence</subject><subject>Deep Learning</subject><subject>Electrocardiography - methods</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Humans</subject><subject>Hypertrophy, Left Ventricular - diagnosis</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prospective Studies</subject><issn>1942-0080</issn><issn>1941-9651</issn><issn>1942-0080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkctO3DAUhq2KqlzaV0BesslwfInjLFGAYaQBKtR2a3mcEyYlkwTbAc2u79A37JPUaACxOmfx_f-RvkPIMYMZY4qdVou7anF9Nl_czGeMwwwY55p9IgeslDwD0LD3Yd8nhyH8BlACcv2F7AvJuCoUPyDTOeJIl2h93_b3NA70u8e6dZFW1tetdfTa3vcYW0fvMAy97R3--_P3HH37hHUKNpH-wj761k2d9YkOgdq-plfbEX30w7je0ks_bCjjWTpT04tqHr6Sz43tAn57nUfk5-XFj-oqW97OF9XZMnOyAJFpVpfO5kWZ2zovnFzxolGwaoSy3Fmedl0qKRC1tIw1TaFRoV4p_SJDoxZH5GTXO_rhccIQzaYNDrvO9jhMwfBcMsFSiUio2qHODyF4bMzo2431W8PAvCg3H5SbpNzslKfg8euNabXB-j325jgBcgc8D11EHx666Rm9WaPt4jq1CFHIUmccOAMFAOljAEL8B_fkjVc</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Khurshid, Shaan</creator><creator>Friedman, Samuel</creator><creator>Pirruccello, James P.</creator><creator>Di Achille, Paolo</creator><creator>Diamant, Nathaniel</creator><creator>Anderson, Christopher D.</creator><creator>Ellinor, Patrick T.</creator><creator>Batra, Puneet</creator><creator>Ho, Jennifer E.</creator><creator>Philippakis, Anthony A.</creator><creator>Lubitz, Steven A.</creator><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7987-4768</orcidid><orcidid>https://orcid.org/0000-0001-9256-0678</orcidid><orcidid>https://orcid.org/0000-0002-0053-2002</orcidid><orcidid>https://orcid.org/0000-0002-9599-4866</orcidid><orcidid>https://orcid.org/0000-0002-2067-0533</orcidid><orcidid>https://orcid.org/0000-0001-6822-0593</orcidid><orcidid>https://orcid.org/0000-0001-6088-4037</orcidid><orcidid>https://orcid.org/0000-0002-2840-4539</orcidid></search><sort><creationdate>20210601</creationdate><title>Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs</title><author>Khurshid, Shaan ; Friedman, Samuel ; Pirruccello, James P. ; Di Achille, Paolo ; Diamant, Nathaniel ; Anderson, Christopher D. ; Ellinor, Patrick T. ; Batra, Puneet ; Ho, Jennifer E. ; Philippakis, Anthony A. ; Lubitz, Steven A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4703-81d9ca5795ad57c4b27f60bf36a2ca2f6089643ee84a11ff78e6e8b6812288e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Deep Learning</topic><topic>Electrocardiography - methods</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Humans</topic><topic>Hypertrophy, Left Ventricular - diagnosis</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khurshid, Shaan</creatorcontrib><creatorcontrib>Friedman, Samuel</creatorcontrib><creatorcontrib>Pirruccello, James P.</creatorcontrib><creatorcontrib>Di Achille, Paolo</creatorcontrib><creatorcontrib>Diamant, Nathaniel</creatorcontrib><creatorcontrib>Anderson, Christopher D.</creatorcontrib><creatorcontrib>Ellinor, Patrick T.</creatorcontrib><creatorcontrib>Batra, Puneet</creatorcontrib><creatorcontrib>Ho, Jennifer E.</creatorcontrib><creatorcontrib>Philippakis, Anthony A.</creatorcontrib><creatorcontrib>Lubitz, Steven A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation. Cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khurshid, Shaan</au><au>Friedman, Samuel</au><au>Pirruccello, James P.</au><au>Di Achille, Paolo</au><au>Diamant, Nathaniel</au><au>Anderson, Christopher D.</au><au>Ellinor, Patrick T.</au><au>Batra, Puneet</au><au>Ho, Jennifer E.</au><au>Philippakis, Anthony A.</au><au>Lubitz, Steven A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs</atitle><jtitle>Circulation. Cardiovascular imaging</jtitle><addtitle>Circ Cardiovasc Imaging</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>14</volume><issue>6</issue><spage>e012281</spage><epage>e012281</epage><pages>e012281-e012281</pages><issn>1942-0080</issn><issn>1941-9651</issn><eissn>1942-0080</eissn><abstract>Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]). In independent test sets (UK Biobank [n=4903] and Mass General Brigham [MGB, n=1371]), we assessed correlation between LVM-AI predicted and CMR-derived LV mass and compared LVH discrimination using LVM-AI versus traditional ECG-based rules (ie, Sokolow-Lyon, Cornell, lead aVL rule, or any ECG rule). In the UK Biobank and an ambulatory MGB cohort (MGB outcomes, n=28 612), we assessed associations between LVM-AI predicted LVH and incident cardiovascular outcomes using age- and sex-adjusted Cox regression. LVM-AI predicted LV mass correlated with CMR-derived LV mass in both test sets, although correlation was greater in the UK Biobank (r=0.79) versus MGB (r=0.60, P&lt;0.001 for both). When compared with any ECG rule, LVM-AI demonstrated similar LVH discrimination in the UK Biobank (LVM-AI c-statistic 0.653 [95% CI, 0.608 -0.698] versus any ECG rule c-statistic 0.618 [95% CI, 0.574 -0.663], P=0.11) and superior discrimination in MGB (0.621; 95% CI, 0.592 -0.649 versus 0.588; 95% CI, 0.564 -0.611, P=0.02). LVM-AI-predicted LVH was associated with incident atrial fibrillation, myocardial infarction, heart failure, and ventricular arrhythmias. Deep learning-inferred LV mass estimates from 12-lead ECGs correlate with CMR-derived LV mass, associate with incident cardiovascular disease, and may improve LVH discrimination compared to traditional ECG rules.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>34126762</pmid><doi>10.1161/CIRCIMAGING.120.012281</doi><orcidid>https://orcid.org/0000-0002-7987-4768</orcidid><orcidid>https://orcid.org/0000-0001-9256-0678</orcidid><orcidid>https://orcid.org/0000-0002-0053-2002</orcidid><orcidid>https://orcid.org/0000-0002-9599-4866</orcidid><orcidid>https://orcid.org/0000-0002-2067-0533</orcidid><orcidid>https://orcid.org/0000-0001-6822-0593</orcidid><orcidid>https://orcid.org/0000-0001-6088-4037</orcidid><orcidid>https://orcid.org/0000-0002-2840-4539</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0080
ispartof Circulation. Cardiovascular imaging, 2021-06, Vol.14 (6), p.e012281-e012281
issn 1942-0080
1941-9651
1942-0080
language eng
recordid cdi_proquest_miscellaneous_2541318963
source MEDLINE; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial Intelligence
Deep Learning
Electrocardiography - methods
Female
Follow-Up Studies
Heart Ventricles - diagnostic imaging
Humans
Hypertrophy, Left Ventricular - diagnosis
Male
Middle Aged
Prospective Studies
title Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20to%20Predict%20Cardiac%20Magnetic%20Resonance%E2%80%93Derived%20Left%20Ventricular%20Mass%20and%20Hypertrophy%20From%2012-Lead%20ECGs&rft.jtitle=Circulation.%20Cardiovascular%20imaging&rft.au=Khurshid,%20Shaan&rft.date=2021-06-01&rft.volume=14&rft.issue=6&rft.spage=e012281&rft.epage=e012281&rft.pages=e012281-e012281&rft.issn=1942-0080&rft.eissn=1942-0080&rft_id=info:doi/10.1161/CIRCIMAGING.120.012281&rft_dat=%3Cproquest_cross%3E2541318963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541318963&rft_id=info:pmid/34126762&rfr_iscdi=true