Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs

Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Within 32 239 individuals of the UK Biobank prospective cohort who underwent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation. Cardiovascular imaging 2021-06, Vol.14 (6), p.e012281-e012281
Hauptverfasser: Khurshid, Shaan, Friedman, Samuel, Pirruccello, James P., Di Achille, Paolo, Diamant, Nathaniel, Anderson, Christopher D., Ellinor, Patrick T., Batra, Puneet, Ho, Jennifer E., Philippakis, Anthony A., Lubitz, Steven A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]). In independent test sets (UK Biobank [n=4903] and Mass General Brigham [MGB, n=1371]), we assessed correlation between LVM-AI predicted and CMR-derived LV mass and compared LVH discrimination using LVM-AI versus traditional ECG-based rules (ie, Sokolow-Lyon, Cornell, lead aVL rule, or any ECG rule). In the UK Biobank and an ambulatory MGB cohort (MGB outcomes, n=28 612), we assessed associations between LVM-AI predicted LVH and incident cardiovascular outcomes using age- and sex-adjusted Cox regression. LVM-AI predicted LV mass correlated with CMR-derived LV mass in both test sets, although correlation was greater in the UK Biobank (r=0.79) versus MGB (r=0.60, P
ISSN:1942-0080
1941-9651
1942-0080
DOI:10.1161/CIRCIMAGING.120.012281