A critical view on the technology readiness level (TRL) of microbial plastics biodegradation

Accumulation of plastic wastes and their effects on the ecosystem have triggered an alarm regarding environmental damage, which explains the massive investigations over the past few years, aiming technological alternatives for their proper destination and valorization. In this context, biological de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2021-07, Vol.37 (7), p.116-116, Article 116
Hauptverfasser: Sales, Julio Cesar Soares, Santos, Ariane Gaspar, de Castro, Aline Machado, Coelho, Maria Alice Zarur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accumulation of plastic wastes and their effects on the ecosystem have triggered an alarm regarding environmental damage, which explains the massive investigations over the past few years, aiming technological alternatives for their proper destination and valorization. In this context, biological degradation emerges as a green route for plastic processing and recycling in a circular economy approach. Some of the main polymers produced worldwide are poly(ethylene terephthalate) (PET), polyethylene (PE) and polypropylene (PP), which are among the most recalcitrant materials in the environment. In comparison to other polymers, PET biodegradation has advanced dramatically in recent years concerning microbial and enzymatic mechanisms, being positioned in a higher technology readiness level (TRL). Even more challenging, polyolefins (PE and PP) biodegradation is hindered by their high recalcitrance, which is mainly related to stable carbon-carbon bonds. Potential microbial biocatalysts for this process have been evaluated, but the related mechanisms are still not fully elucidated. This review aims to discuss the latest developments on key microbial biocatalysts for degradation of these polymers, addressing biodegradation monitoring, intellectual property, and TRL analysis of the bioprocessing strategies using biodegradation performance, process time and scale as parameters for the evaluation.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-021-03089-0