Consistent determination of the heating rate of light-absorbing aerosol using wavelength- and time-dependent Aethalometer multiple-scattering correction

Accurate and temporally consistent measurements of light absorbing aerosol (LAA) heating rate (HR) and of its source apportionment (fossil-fuel, FF; biomass-burning, BB) and speciation (black and brown Carbon; BC, BrC) are needed to evaluate LAA short-term climate forcing. For this purpose, waveleng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-10, Vol.791, p.148277-148277, Article 148277
Hauptverfasser: Ferrero, L., Bernardoni, V., Santagostini, L., Cogliati, S., Soldan, F., Valentini, S., Massabò, D., Močnik, G., Gregorič, A., Rigler, M., Prati, P., Bigogno, A., Losi, N., Valli, G., Vecchi, R., Bolzacchini, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate and temporally consistent measurements of light absorbing aerosol (LAA) heating rate (HR) and of its source apportionment (fossil-fuel, FF; biomass-burning, BB) and speciation (black and brown Carbon; BC, BrC) are needed to evaluate LAA short-term climate forcing. For this purpose, wavelength- and time-dependent accurate LAA absorption coefficients are required. HR was experimentally determined and apportioned (sources/species) in the EMEP/ACTRIS/COLOSSAL-2018 winter campaign in Milan (urban-background site). Two Aethalometers (AE31/AE33) were installed together with a MAAP, CPC, OPC, a low volume sampler (PM2.5) and radiation instruments. AE31/AE33 multiple-scattering correction factors (C) were determined using two reference systems for the absorption coefficient: 1) 5-wavelength PP_UniMI with low time resolution (12 h, applied to PM2.5 samples); 2) timely-resolved MAAP data at a single wavelength. Using wavelength- and time-independent C values for the AE31 and AE33 obtained with the same reference device, the total HR showed a consistency (i.e. reproducibility) with average values comparable at 95% probability. However, if different reference devices/approaches are used, i.e. MAAP is chosen as reference instead of a PP_UniMI, the HR can be overestimated by 23–30% factor (by both AE31/AE33). This became more evident focusing on HR apportionment: AE33 data (corrected by a wavelength- and time-independent C) showed higher HRFF (+24 ± 1%) and higher HRBC (+10 ± 1%) than that of AE31. Conversely, HRBB and HRBrC were −28 ± 1% and −29 ± 1% lower for AE33 compared to AE31. These inconsistencies were overcome by introducing a wavelength-dependent Cλ for both AE31 and AE33, or using multi-wavelength apportionment methods, highlighting the need for further studies on the influence of wavelength corrections for HR determination. Finally, the temporally-resolved determination of C resulted in a diurnal cycle of the HR not statistically different whatever the source- speciation- apportionment used. [Display omitted] •Total and apportioned (FF/BB; BC/BrC) aerosol heating rate (HR) was measured.•Total HR variability ranges up to 30% by applying different aethalometer C factors.•Non-statically difference on the total HR (AE31 vs AE33) using the same reference for absorption•HR apportionment differs up to 30% from AE31 to AE33 if wavelength-independent C is used.•Wavelength-dependent C makes the AE31 and AE33 HR apportionment comparable.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.148277