Near-GeV Electron Beams at a Few Per-Mille Level from a Laser Wakefield Accelerator via Density-Tailored Plasma
A simple, efficient scheme was developed to obtain near-gigaelectronvolt electron beams with energy spreads of few per-mille level in a single-stage laser wakefield accelerator. Longitudinal plasma density was tailored to control relativistic laser-beam evolution, resulting in injection, dechirping,...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-05, Vol.126 (21), p.214801-214801, Article 214801 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple, efficient scheme was developed to obtain near-gigaelectronvolt electron beams with energy spreads of few per-mille level in a single-stage laser wakefield accelerator. Longitudinal plasma density was tailored to control relativistic laser-beam evolution, resulting in injection, dechirping, and a quasi-phase-stable acceleration. With this scheme, electron beams with peak energies of 780–840 MeV, rms energy spreads of 2.4‰–4.1‰, charges of 8.5–23.6 pC, and rms divergences of 0.1–0.4 mrad were experimentally obtained. Quasi-three-dimensional particle-in-cell simulations agreed well with the experimental results. The dechirping strength was estimated to reach up to 11 TeV/mm/m, which is higher than previously obtained results. Such high-quality electron beams will boost the development of compact intense coherent radiation sources and x-ray free-electron lasers. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.126.214801 |