Resilience of the Internal Mammary Artery to Atherogenesis: Shifting From Risk to Resistance to Address Unmet Needs

Fueled by the global surge in aging, atherosclerotic cardiovascular disease reached pandemic dimensions putting affected individuals at enhanced risk of myocardial infarction, stroke, and premature death. Atherosclerosis is a systemic disease driven by a wide spectrum of factors, including cholester...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2021-08, Vol.41 (8), p.2237-2251
Hauptverfasser: Kraler, Simon, Libby, Peter, Evans, Paul C., Akhmedov, Alexander, Schmiady, Martin O., Reinehr, Michael, Camici, Giovanni G., Lüscher, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fueled by the global surge in aging, atherosclerotic cardiovascular disease reached pandemic dimensions putting affected individuals at enhanced risk of myocardial infarction, stroke, and premature death. Atherosclerosis is a systemic disease driven by a wide spectrum of factors, including cholesterol, pressure, and disturbed flow. Although all arterial beds encounter a similar atherogenic milieu, the development of atheromatous lesions occurs discontinuously across the vascular system. Indeed, the internal mammary artery possesses unique biological properties that confer protection to intimal growth and atherosclerotic plaque formation, thus making it a conduit of choice for coronary artery bypass grafting. Its endothelium abundantly expresses nitric oxide synthase and shows accentuated nitric oxide release, while its vascular smooth muscle cells exhibit reduced tissue factor expression, high tPA (tissue-type plasminogen activator) production and blunted migration and proliferation, which may collectively mitigate intimal thickening and ultimately the evolution of atheromatous plaques. We aim here to provide insights into the anatomy, physiology, cellular, and molecular aspects of the internal mammary artery thereby elucidating its remarkable resistance to atherogenesis. We propose a change in perspective from risk to resilience to decipher mechanisms of atheroresistance and eventually identification of novel therapeutic targets presently not addressed by currently available remedies.
ISSN:1079-5642
1524-4636
DOI:10.1161/ATVBAHA.121.316256