Implantation of Neuropixels probes for chronic recording of neuronal activity in freely behaving mice and rats

How dynamic activity in neural circuits gives rise to behavior is a major area of interest in neuroscience. A key experimental approach for addressing this question involves measuring extracellular neuronal activity in awake, behaving animals. Recently developed Neuropixels probes have provided a st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2021-07, Vol.16 (7), p.3322-3347
Hauptverfasser: van Daal, Rik J. J., Aydin, Çağatay, Michon, Frédéric, Aarts, Arno A. A., Kraft, Michael, Kloosterman, Fabian, Haesler, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How dynamic activity in neural circuits gives rise to behavior is a major area of interest in neuroscience. A key experimental approach for addressing this question involves measuring extracellular neuronal activity in awake, behaving animals. Recently developed Neuropixels probes have provided a step change in recording neural activity in large tissue volumes with high spatiotemporal resolution. This protocol describes the chronic implantation of Neuropixels probes in mice and rats using compact and reusable 3D-printed fixtures. The fixtures facilitate stable chronic in vivo recordings in freely behaving rats and mice. They consist of two parts: a covered main body and a skull connector. Single-, dual- and movable-probe fixture variants are available. After completing an experiment, probes are safely recovered for reimplantation by a dedicated retrieval mechanism. Fixture assembly and surgical implantation typically take 4–5 h, and probe retrieval takes ~30 min, followed by 12 h of incubation in probe cleaning agent. The duration of data acquisition depends on the type of behavioral experiment. Since our protocol enables stable, chronic recordings over weeks, it enables longitudinal large-scale single-unit data to be routinely obtained in a cost-efficient manner, which will facilitate many studies in systems neuroscience. This protocol describes the implantation of Neuropixels probes for chronic recording of neural activity in rats and mice using 3D-printed fixtures. The fixtures enable routine probe reuse, and single-, dual- and movable-probe variants are described.
ISSN:1754-2189
1750-2799
DOI:10.1038/s41596-021-00539-9