The effects of short term hyperglycemia on human red blood cells studied using Raman spectroscopy and optical trap
Management of postprandial hyperglycemia is important for preventing severe complications like cardiovascular disease in diabetes patients. The associated glycemic instability in postprandial hyperglycemia may also cause disorders in circulating red blood cells (RBCs). Therefore, effects of short-te...
Gespeichert in:
Veröffentlicht in: | European biophysics journal 2021-09, Vol.50 (6), p.867-876 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Management of postprandial hyperglycemia is important for preventing severe complications like cardiovascular disease in diabetes patients. The associated glycemic instability in postprandial hyperglycemia may also cause disorders in circulating red blood cells (RBCs). Therefore, effects of short-term hyperglycemic stress on RBCs such as occur in the postprandial condition, have been studied here ex vivo using single-cell Raman spectroscopy and optical trapping. RBCs incubated in high glucose containing media relevant to postprandial hyperglycemia were studied for changes with respect to controls by analyzing the single-cell Raman spectra acquired with Raman optical tweezers with 532 nm excitation light. Use of 532 nm light for exciting Raman spectra also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction was noticed to be limited in hyperglycemia-exposed cells in comparison to the control. Since this suggests formation of permanently oxidized Hb in hyperglycemia-exposed RBCs, a fluorescence study was performed which showed elevated levels of oxidative stress in these cells. The changes in the RBC membrane, which may result due to higher levels of oxidative stress, were investigated using optical stretching experiments under the laser trap. The results indicated a loss of elasticity for the RBC membrane due to hyperglycemic exposure. |
---|---|
ISSN: | 0175-7571 1432-1017 |
DOI: | 10.1007/s00249-021-01541-5 |