Surveilling and Tracking COVID-19 Patients Using a Portable Quantum Dot Smartphone Device
The ability to rapidly diagnose, track, and disseminate information for SARS-CoV-2 is critical to minimize its spread. Here, we engineered a portable smartphone-based quantum barcode serological assay device for real-time surveillance of patients infected with SARS-CoV-2. Our device achieved a clini...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-06, Vol.21 (12), p.5209-5216 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to rapidly diagnose, track, and disseminate information for SARS-CoV-2 is critical to minimize its spread. Here, we engineered a portable smartphone-based quantum barcode serological assay device for real-time surveillance of patients infected with SARS-CoV-2. Our device achieved a clinical sensitivity of 90% and specificity of 100% for SARS-CoV-2, as compared to 34% and 100%, respectively, for lateral flow assays in a head-to-head comparison. The lateral flow assay misdiagnosed ∼2 out of 3 SARS-CoV-2 positive patients. Our quantum dot barcode device has ∼3 times greater clinical sensitivity because it is ∼140 times more analytically sensitive than lateral flow assays. Our device can diagnose SARS-CoV-2 at different sampling dates and infectious severity. We developed a databasing app to provide instantaneous results to inform patients, physicians, and public health agencies. This assay and device enable real-time surveillance of SARS-CoV-2 seroprevalence and potential immunity. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c01280 |