Quadratic approximations in convex nondifferentiable optimization

An implementable descent method for the unconstrained minimization of convex nonsmooth functions of several variables is described. The algorithm is characterized by the use of a set of quadratic approximations of the objective function in order to compute the search direction. The resulting directi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1991, Vol.29 (1), p.58-70
Hauptverfasser: GAUDIOSO, M, FLAVIA MONACO, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An implementable descent method for the unconstrained minimization of convex nonsmooth functions of several variables is described. The algorithm is characterized by the use of a set of quadratic approximations of the objective function in order to compute the search direction. The resulting direction finding subproblem is shown to be equivalent to a structured parametric quadratic programming problem. The convergence of the algorithm to the minimum is proved, and numerical experience is reported.
ISSN:0363-0129
1095-7138
DOI:10.1137/0329003