Endoplasmic reticulum unfolded protein response modulates the adaptation of Trachemys scripta elegans in salinity water

Trachemys scripta elegans, as a freshwater invasive species, can survive and lay eggs in brackish water, which may lead to the expansion of its potential invasion range due to freshwater salinization. Our previous studies have shown that high salinity leads to the accumulation of serum lipid content...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Toxicology & pharmacology 2021-10, Vol.248, p.109102-109102, Article 109102
Hauptverfasser: Li, Na, Huang, Zubin, Ding, Li, Shi, Haitao, Hong, Meiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Trachemys scripta elegans, as a freshwater invasive species, can survive and lay eggs in brackish water, which may lead to the expansion of its potential invasion range due to freshwater salinization. Our previous studies have shown that high salinity leads to the accumulation of serum lipid content, which may induce endoplasmic reticulum stress (ERS) in the turtle. To better understand whether ERS is triggered by salinity, and in turn whether the turtles promote the protection mechanism, we exposed the turtles to the freshwater (CK), 5‰ salinity water (S5) and 15‰ salinity water (S15), and sampled at 6 h, 24 h and 30 d. 13 differentially expressed genes (DEGs) related to ERS pathways were found in the comparison of CK vs. S15 by transcriptomics analysis. Then, the mRNA and protein expression of ERS and its related activation pathways were further investigated. ERS marker glucose regulated protein 78 kD (GRP78) increased significantly (p 
ISSN:1532-0456
1878-1659
DOI:10.1016/j.cbpc.2021.109102