Prediction of magnetic flux-controlled gate voltage in superconducting field-effect transistors
The undirectional model to the superconducting field-effect transistor (SFET) is shown to be thermodynamically unsound. A gate voltage which is controlled by the magnetic flux difference in a Josephson weak link is predicted by energy arguments. For a passive SFET model to be consistent with recent...
Gespeichert in:
Veröffentlicht in: | IEEE Electron Device Lett.; (United States) 1989-02, Vol.10 (2), p.82-84 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The undirectional model to the superconducting field-effect transistor (SFET) is shown to be thermodynamically unsound. A gate voltage which is controlled by the magnetic flux difference in a Josephson weak link is predicted by energy arguments. For a passive SFET model to be consistent with recent experimental observations of a charge-controlled critical current, a back-reaction from the DC drain-to-source flux (phase difference) to the DC gate voltage is required. As this effect is important in large devices and occurs at V/sub DS/=0, it does not appear to be directly related to charge-space energy bands or quasiparticle interference.< > |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/55.32436 |