Parallel multiple search
Two sequences of items sorted in increasing order are given: a sequence A of size n and a sequence B of size m. It is required to determine, for every item of A, the smallest item of B (if one exists) that is larger than it. In this paper, we present two algorithms for the problem. The first algorit...
Gespeichert in:
Veröffentlicht in: | Information processing letters 1991-02, Vol.37 (4), p.181-186 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two sequences of items sorted in increasing order are given: a sequence
A of size
n and a sequence
B of size
m. It is required to determine, for every item of
A, the smallest item of
B (if one exists) that is larger than it. In this paper, we present two algorithms for the problem. The first algorithm requires O(log
m + log
n) time using
n processors on an EREW PRAM. On an EREW PRAM with
p(
p≤min{
m,
n}) processors, the second algorithm runs in O(log
n +
n
p
time when
m≤
n,or in O(log
m + (
n
p
)log(2
m
n
)) time when
m>n. The second algorithm is optimal. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/0020-0190(91)90185-K |