Modification of Metal-Organic Framework Nanoparticles Using Dental Pulp Mesenchymal Stem Cell Membranes to Target Oral Squamous Cell Carcinoma

Metal-organic framework nanoparticles (MOFs) coated with dental pulp mesenchymal stem cell (DPSC) membranes contained CXCR2 can carry DOX to form MOF-DOX@DPSCM and be chemoattracted by the chemokine CXCL8 secreted from the oral squamous cell carcinoma (OSCC) leading to inhibit OSCC growth in vitro a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-11, Vol.601, p.650-660
Hauptverfasser: Zhou, Dabo, Chen, Yixin, Bu, Wenhuan, Meng, Lin, Wang, Congcong, Jin, Nianqiang, Chen, Yumeng, Ren, Chunxia, Zhang, Kai, Sun, Hongchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal-organic framework nanoparticles (MOFs) coated with dental pulp mesenchymal stem cell (DPSC) membranes contained CXCR2 can carry DOX to form MOF-DOX@DPSCM and be chemoattracted by the chemokine CXCL8 secreted from the oral squamous cell carcinoma (OSCC) leading to inhibit OSCC growth in vitro and in vivo. Graphic 1 Schematic illustration of modification of MOFs using DPSC membranes to target OSCC. [Display omitted] •DPSCs can be recruited to sites of OSCC.•OSCC recruit DPSCs by CXCL8-CXCR2 axis.•A novel nanoparticle, MOF@DPSCM can efficiently deliver antitumor drug to effectively target to OSCC. Engineering a targetable nanoparticle to tumor cell is a challenge issue for clinical application. Our results demonstrated that the chemokine CXCL8 secreted by oral squamous cell carcinoma (OSCC) could act as a chemoattractant to attract dental pulp mesenchymal stem cell (DPSC), which expressed the CXCL8 binding receptor, CXCR2, to the OSCC. Therefore, to create OSCC targetable nanoparticles, we used DPSC membranes to modify nanoparticles of metal-organic framework nanoparticles (MOFs) resulting in a novel MOF@DPSCM nanoparticle. Interestingly, results from in vitro and in vivo experiments illustrated that MOF@DPSCM possessed specificity for the OSCC, and the MOF@DPSCM carried DOX (doxorubicin), MOF-DOX@DPSCM could induce CAL27 cell death in vitro and block CAL27 tumor growth in vivo. Our data suggest that this novel MOF-DOX@DPSCM nanoparticle is a potential targetable drug delivery system for the OSCC in the future clinical application.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.05.126