[Cu{SC(O)O i Pr}]96: A Giant Self-Assembled Copper(I) Supramolecular Wheel Exhibiting Photoluminescence Tuning and Correlations with Dynamic Solvation and Solventless Synthesis
The hierarchical self-organization of structurally complex high-nuclearity metal clusters with metallosupramolecular wheel architectures that are obtained from the self-assembly of smaller solvated cluster units is rare and unique. Here, we use the potentially heteroditopic monothiocarbonate ligand...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2021-06, Vol.60 (12), p.8973-8983 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hierarchical self-organization of structurally complex high-nuclearity metal clusters with metallosupramolecular wheel architectures that are obtained from the self-assembly of smaller solvated cluster units is rare and unique. Here, we use the potentially heteroditopic monothiocarbonate ligand and demonstrate for the first time the synthesis and structure of a solvated non-cyclic hexadecanuclear cluster [Cu{SC(O)O i Pr}]16·2THF (1) that can simultaneously desolvate and self-assemble in solution and subsequently form a giant metallaring, [Cu{SC(O)O i Pr}]96 (2). We also demonstrate a luminescent precursor to cluster (2) can be achieved through a solventless and rapid mechanochemical synthesis. Cluster (2) is the highest nuclearity copper(I) wheel and the largest metal cluster containing a heterodichalcogen (O, S) ligand reported to date. Cluster (2) also exhibits solid-state luminescence with relatively long emission lifetimes at 4.1, 13.9 (μs). The synthetic strategy described here opens new research avenues by replacing solvent molecules in stable {Cu16} clusters with designed building units that can form new hybrid and multifunctional finite supramolecular materials. This finding may lead to the development of novel high-nuclearity materials self-assembled in a facile manner with tunable optical properties. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c00871 |