Glycoproteomics Analysis Reveals Differential Expression of Site-Specific Glycosylation in Human Milk Whey during Lactation

Protein N-glycosylation in human milk whey plays a substantial role in infant health during postnatal development. Changes in site-specific glycans in milk whey reflect the needs of infants under different circumstances. However, the conventional glycoproteomics analysis of milk whey cannot reveal t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2021-06, Vol.69 (23), p.6690-6700
Hauptverfasser: Wang, Zhongyu, Zhang, Na, Wang, Wendan, Li, Yitong, Szeto, Ignatius M, Qin, Hongqiang, Jin, Yan, Ye, Mingliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein N-glycosylation in human milk whey plays a substantial role in infant health during postnatal development. Changes in site-specific glycans in milk whey reflect the needs of infants under different circumstances. However, the conventional glycoproteomics analysis of milk whey cannot reveal the changes in site-specific glycans because the attached glycans are typically enzymatically removed from the glycoproteins prior to analysis. In this study, N-glycoproteomics analysis of milk whey was performed without removing the attached glycans, and 330 and 327 intact glycopeptides were identified in colostrum and mature milk whey, respectively. Label-free quantification of site-specific glycans was achieved by analyzing the identified intact glycopeptides, which revealed 9 significantly upregulated site-specific glycans on 6 glycosites and 11 significantly downregulated site-specific glycans on 8 glycosites. Some interesting change trends in N-glycans attached to specific glycosites in human milk whey were observed. Bisecting GlcNAc was found attached to 11 glycosites on 8 glycoproteins in colostrum and mature milk. The dynamic changes in site-specific glycans revealed in this study provide insights into the role of protein N-glycosylation during infant development.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.0c07998