An example of a nonregular semimonotone Q-matrix

In their paper, Agangic and Cottle gave necessary and sufficient conditions for a P sub(0)-matrix to be a Q-matrix. In this paper, Pang showed that the same characterization holds for an L-matrix. In this paper, we show that a similar characterization for an E sub(0)-matrix (semimonotone or L sub(1)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 1989-11, Vol.44 (3), p.351-356
Hauptverfasser: JETER, M. W, PYE, W. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 3
container_start_page 351
container_title Mathematical programming
container_volume 44
creator JETER, M. W
PYE, W. C
description In their paper, Agangic and Cottle gave necessary and sufficient conditions for a P sub(0)-matrix to be a Q-matrix. In this paper, Pang showed that the same characterization holds for an L-matrix. In this paper, we show that a similar characterization for an E sub(0)-matrix (semimonotone or L sub(1)-matrix) is not possible. This is done by providing a counterexample to the inclusion E sub(0) intersection Q included in R sub(0), thus answering in the negative a question first posed by Pang.
doi_str_mv 10.1007/BF01587097
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_25369752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25369752</sourcerecordid><originalsourceid>FETCH-LOGICAL-p215t-71237fe83ba2832293ae2e0aaa8d5361405975282e3ac89042947c28de7aa4043</originalsourceid><addsrcrecordid>eNotzM1Kw0AUQOFBFIzVjU-QhbgbvfM_WdZiVSiIoOtwTW8kkszEmQTq29tiV2dz-Bi7FnAnANz9wxqE8Q4qd8IKoZXl2mp7ygoAabixAs7ZRc7fACCU9wWDZShph8PYUxnbEssQQ6KvucdUZhq6IYY4xUDlGx9wSt3ukp212Ge6OnbBPtaP76tnvnl9elktN3yUwkzcCalcS159ovRKykohSQJE9FujrNBgKmekl6Sw8RVoWWnXSL8lh6hBqwW7_XfHFH9mylM9dLmhvsdAcc613CsHYT_eHEfMDfZtwtB0uR5TN2D6ra3VTlRC_QEuRVEJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25369752</pqid></control><display><type>article</type><title>An example of a nonregular semimonotone Q-matrix</title><source>SpringerNature Journals</source><creator>JETER, M. W ; PYE, W. C</creator><creatorcontrib>JETER, M. W ; PYE, W. C</creatorcontrib><description>In their paper, Agangic and Cottle gave necessary and sufficient conditions for a P sub(0)-matrix to be a Q-matrix. In this paper, Pang showed that the same characterization holds for an L-matrix. In this paper, we show that a similar characterization for an E sub(0)-matrix (semimonotone or L sub(1)-matrix) is not possible. This is done by providing a counterexample to the inclusion E sub(0) intersection Q included in R sub(0), thus answering in the negative a question first posed by Pang.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/BF01587097</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Mathematical programming, 1989-11, Vol.44 (3), p.351-356</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6647191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JETER, M. W</creatorcontrib><creatorcontrib>PYE, W. C</creatorcontrib><title>An example of a nonregular semimonotone Q-matrix</title><title>Mathematical programming</title><description>In their paper, Agangic and Cottle gave necessary and sufficient conditions for a P sub(0)-matrix to be a Q-matrix. In this paper, Pang showed that the same characterization holds for an L-matrix. In this paper, we show that a similar characterization for an E sub(0)-matrix (semimonotone or L sub(1)-matrix) is not possible. This is done by providing a counterexample to the inclusion E sub(0) intersection Q included in R sub(0), thus answering in the negative a question first posed by Pang.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNotzM1Kw0AUQOFBFIzVjU-QhbgbvfM_WdZiVSiIoOtwTW8kkszEmQTq29tiV2dz-Bi7FnAnANz9wxqE8Q4qd8IKoZXl2mp7ygoAabixAs7ZRc7fACCU9wWDZShph8PYUxnbEssQQ6KvucdUZhq6IYY4xUDlGx9wSt3ukp212Ge6OnbBPtaP76tnvnl9elktN3yUwkzcCalcS159ovRKykohSQJE9FujrNBgKmekl6Sw8RVoWWnXSL8lh6hBqwW7_XfHFH9mylM9dLmhvsdAcc613CsHYT_eHEfMDfZtwtB0uR5TN2D6ra3VTlRC_QEuRVEJ</recordid><startdate>19891101</startdate><enddate>19891101</enddate><creator>JETER, M. W</creator><creator>PYE, W. C</creator><general>Springer</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19891101</creationdate><title>An example of a nonregular semimonotone Q-matrix</title><author>JETER, M. W ; PYE, W. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p215t-71237fe83ba2832293ae2e0aaa8d5361405975282e3ac89042947c28de7aa4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JETER, M. W</creatorcontrib><creatorcontrib>PYE, W. C</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JETER, M. W</au><au>PYE, W. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An example of a nonregular semimonotone Q-matrix</atitle><jtitle>Mathematical programming</jtitle><date>1989-11-01</date><risdate>1989</risdate><volume>44</volume><issue>3</issue><spage>351</spage><epage>356</epage><pages>351-356</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>In their paper, Agangic and Cottle gave necessary and sufficient conditions for a P sub(0)-matrix to be a Q-matrix. In this paper, Pang showed that the same characterization holds for an L-matrix. In this paper, we show that a similar characterization for an E sub(0)-matrix (semimonotone or L sub(1)-matrix) is not possible. This is done by providing a counterexample to the inclusion E sub(0) intersection Q included in R sub(0), thus answering in the negative a question first posed by Pang.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01587097</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 1989-11, Vol.44 (3), p.351-356
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_25369752
source SpringerNature Journals
subjects Applied sciences
Exact sciences and technology
Flows in networks. Combinatorial problems
Operational research and scientific management
Operational research. Management science
title An example of a nonregular semimonotone Q-matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20example%20of%20a%20nonregular%20semimonotone%20Q-matrix&rft.jtitle=Mathematical%20programming&rft.au=JETER,%20M.%20W&rft.date=1989-11-01&rft.volume=44&rft.issue=3&rft.spage=351&rft.epage=356&rft.pages=351-356&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/BF01587097&rft_dat=%3Cproquest_pasca%3E25369752%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25369752&rft_id=info:pmid/&rfr_iscdi=true