An example of a nonregular semimonotone Q-matrix
In their paper, Agangic and Cottle gave necessary and sufficient conditions for a P sub(0)-matrix to be a Q-matrix. In this paper, Pang showed that the same characterization holds for an L-matrix. In this paper, we show that a similar characterization for an E sub(0)-matrix (semimonotone or L sub(1)...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 1989-11, Vol.44 (3), p.351-356 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In their paper, Agangic and Cottle gave necessary and sufficient conditions for a P sub(0)-matrix to be a Q-matrix. In this paper, Pang showed that the same characterization holds for an L-matrix. In this paper, we show that a similar characterization for an E sub(0)-matrix (semimonotone or L sub(1)-matrix) is not possible. This is done by providing a counterexample to the inclusion E sub(0) intersection Q included in R sub(0), thus answering in the negative a question first posed by Pang. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/BF01587097 |