Accurate Quantification of Sulfonamide Metabolites in Goat Meat: A New Strategy for Minimizing Interaction between Sheep Serum Albumin and Sulfonamide Metabolites

To date, the determination of sulfonamide metabolites in animal-derived food has universal disadvantages of low throughput and no integrated metabolites involved. In this study, a powerful and reliable strategy for high-throughput screening of sulfonamide metabolites in goat meat was proposed based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2021-06, Vol.69 (23), p.6556-6568
Hauptverfasser: Jia, Wei, Zhang, Min, Du, An, Zhang, Rong, Xu, Mudan, Shi, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To date, the determination of sulfonamide metabolites in animal-derived food has universal disadvantages of low throughput and no integrated metabolites involved. In this study, a powerful and reliable strategy for high-throughput screening of sulfonamide metabolites in goat meat was proposed based on an aqueous two-phase separation procedure (ATPS) combined with ultrahigh-performance liquid chromatography quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap). Noncovalent interactions including van der Waals force, hydrogen bonding, and hydrophobic effect were determined to be staple interactions between the sulfonamide metabolites and sheep serum albumin by fluorescence spectroscopy and molecular docking technology, and an 80% acetonitrile–water solution/(NH4)2SO4 was used as ATPS in order to release combined sulfonamide metabolites and minimize the influence of sheep serum albumin. Sulfonamide metabolites in the matrix were screened based on a mechanism of mass natural loss and core structure followed by identification combined with the pharmacokinetic. The developed strategy was validated according to EU standard 2002/657/EC with CCα ranging from 0.07 to 0.98 μg kg–1, accuracy recovery with 84–107%, and RSDs lower than 8.9%. Eighty seven goat meat samples were used for determination of 26 sulfonamides and 8 potential metabolites. On the basis of the established innovative process, this study has successfully implemented the comprehensive detection of sulfonamide metabolites, including N 4 -acetylated substitution, N 4 -hydroxylation, 4-nitroso, azo dimers, oxidized nitro, N 4 monoglucose conjugation, β-d-glucuronide, and N-4-aminobenzenesulfonyl metabolites, which were shown to undergo oxidation, hydrogenation, sulfation, glucuronidation, glucosylation, and O-aminomethylation.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.1c02496