Fish oil encapsulated in soy protein particles by lyophilization. Effect of drying process
BACKGROUND Fish oil is an important source of healthy ω‐3 fatty acids to be used in functional foods. However, its autoxidation susceptibility, aroma and solubility make it difficult to use. Its encapsulation could reduce these disadvantages. This manuscript focuses on the drying stage of the encaps...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2022-01, Vol.102 (1), p.206-213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND
Fish oil is an important source of healthy ω‐3 fatty acids to be used in functional foods. However, its autoxidation susceptibility, aroma and solubility make it difficult to use. Its encapsulation could reduce these disadvantages. This manuscript focuses on the drying stage of the encapsulation process. Its objective was to study the encapsulation of fish oil with soy proteins by emulsification and lyophilization and compare microparticles characteristics with those processed identically but spray dried.
RESULTS
Microparticles with different protein/oil ratios were prepared by emulsification and lyophilization. Soy proteins encapsulated fish oil in matrix‐type microcapsules masking its typical odor and oily appearance. Microparticles dried by lyophilization showed a better solid recovery but lower encapsulation efficiency than those spray dried. Increasing protein/oil mass ratio of initial formulations seemed to favor initial lipid oxidation, but these differences were not appreciated when analyzing the oxidative stability over time (measured by Rancimat test). Porous structure and large surface area of lyophilized samples would favor oxygen easy penetration and exposition to free radicals, increasing lipid oxidation over time, while spray dried microparticles showed a good oxidative stability over time, like that of free oil.
CONCLUSION
Drying processes were determinants in the morphology of microcapsules, the efficiency of encapsulation and protection exerted on the oil. Although emulsifying and drying processes caused certain initial oil oxidation, soy proteins managed to mask fish oil flavors and spray dried systems showed a good perspective of oxidative stability of fish oil over time, better than that of lyophilized microparticles. © 2021 Society of Chemical Industry |
---|---|
ISSN: | 0022-5142 1097-0010 |
DOI: | 10.1002/jsfa.11347 |