Rho-associated kinases contribute to the regulation of tau phosphorylation and amyloid metabolism during neuronal plasticity
Background Neural plasticity under physiological condition develops together with normal tau phosphorylation and amyloid precursor protein (APP) processing. Since restoration of PI3-kinase signaling has therapeutic potential in Alzheimer's disease, we investigated plasticity-related changes in...
Gespeichert in:
Veröffentlicht in: | Pharmacological reports 2021-10, Vol.73 (5), p.1303-1314 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Neural plasticity under physiological condition develops together with normal tau phosphorylation and amyloid precursor protein (APP) processing. Since restoration of PI3-kinase signaling has therapeutic potential in Alzheimer's disease, we investigated plasticity-related changes in tau and APP metabolism by the selective Rho-kinase inhibitor fasudil.
Methods
Field potentials composed of a field excitatory post-synaptic potential (fEPSP) and a population spike (PS) were recorded from a granule cell layer of the dentate gyrus. Plasticity of synaptic strength and neuronal function was induced by strong tetanic stimulation (HFS) and low-frequency stimulation (LFS) patterns. Infusions of saline or fasudil were given for 1 h starting from the application of the induction protocols. Total and phosphorylated tau levels and soluble APPα levels were measured in the hippocampus, which was removed after at least 1 h post-induction period.
Results
Fasudil infusion resulted in attenuation of fEPSP slope and PS amplitude in response to both HFS and LFS. Fasudil reduced total tau and phosphorylated tau at residue Thr
181
in the HFS-stimulated hippocampus, while Thr
231
phosphorylation was reduced by fasudil treatment in the LFS-stimulated hippocampus. Ser
416
phosphorylation was increased by fasudil treatment in both HFS- and LFS-stimulated hippocampus. Fasudil significantly increased soluble APPα in LFS-stimulated hippocampus, but not in HFS-stimulated hippocampus.
Conclusion
In light of our findings, we suggest that increased activity of Rho kinase could trigger a mechanism that goes awry during synaptic plasticity which is reversed by a Rho-kinase inhibitor. Thus, Rho-kinase inhibition might be a therapeutic target in cognitive disorders. |
---|---|
ISSN: | 1734-1140 2299-5684 |
DOI: | 10.1007/s43440-021-00279-3 |