Model Analysis of the Role of Kinetics, Adsorption Capacity, and Heat and Mass Transfer Effects in Sorption Enhanced Dimethyl Ether Synthesis

The role of kinetics, adsorption capacity, and heat and mass transfer effects in the sorption enhanced dimethyl ether synthesis (SEDMES) is investigated by means of a 2D+1D model of a single tube of an industrial-scale, externally cooled, multitubular reactor that simulates the reaction/adsorption s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2021-05, Vol.60 (18), p.6767-6783
Hauptverfasser: Guffanti, Simone, Visconti, Carlo Giorgio, Groppi, Gianpiero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of kinetics, adsorption capacity, and heat and mass transfer effects in the sorption enhanced dimethyl ether synthesis (SEDMES) is investigated by means of a 2D+1D model of a single tube of an industrial-scale, externally cooled, multitubular reactor that simulates the reaction/adsorption step of the SEDMES cycle. The effect of the adsorbent/catalyst weight ratio is analyzed, showing that a trade-off between DME productivity and yield originates from the balance of kinetics and adsorption capacity in the reactor tube. The effects of internal diffusion in catalyst particles are shown to have a strong impact on effective reaction rates: significant yield/productivity improvements are obtained when using a mechanical mixture of catalysts with small particle diameters or by rearranging the distribution of the two active phases in hybrid or core@shell pellets. The thermal effects in the reactor, which are increasingly critical upon intensifying the SEDMES process conditions, are also addressed.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.1c00521